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An approximate set of equations is derived for a compressible liquid of infinite Prandtl 
number. These are referred to as the anelastic-liquid equations. The approximation 
requires the product of absolute temperature and volume coefficient of thermal ex- 
pansion to be small compared to one. A single parameter defined as the ratio of the 
depth of the convecting layer, d ,  to the temperature scale height of the liquid, HT, 
governs the importance of the non-Boussinesq effects of compressibility, viscous 
dissipation, variable adiabatic temperature gradients and non-hydrostatic pressure 
gradients. When d/HT < 1 the Boussinesq equations result, but when d/HT is o( 1) 
the non-Boussinesq terms become important. Using a time-dependent numerical 
model, the anelastic-liquid equations are solved in two dimensions and a systematic 
investigation of compressible convection is presented in which d/HT is vaned from 
0.1 to 1.5. Both marginal stability and finite-amplitude convection are studied. For 
d/HT < 1.0 the effect of density variations is primarily geometric; descending parcels 
of liquid contract and ascending parcels expand, resulting in an increase in vorticity 
with depth. When d/HT > 1.0 the density stratification significantly stabilizes the 
lower regions of the marginal state solutions. At all values of d/HT 2 0.25, an adiabatic 
temperature gradient proportional to temperature has a noticeable stabilizing effect 
on the lower regions. For d/HT 2 0.5, marginal solutions are completely stabilized 
at the bottom of the layer and penetrative convection occurs for a finite range of 
supercritical Rayleigh numbers. In  the finite-amplitude solutions adiabatic heating 
and cooling produces an isentropic central region. Viscous dissipation acts to re- 
distribute buoyancy sources and intense frictional heating influences flow solutions 
locally in a time-dependent manner. The ratio of the total viscous heating in the 
convecting system, @, to the heat flux across the upper surface, Fu, has an upper limit 
equal to d / H T .  This limit is achieved a t  high Rayleigh numbers, when heating is 
entirely frombelow, and, forsufficientlylarge valuesof d / H T ,  @IFu is greater than 1.00. 

1. Introduction 
Since the early experiments of shallow layer convection by BBnard (1901) and the 

first theoretical description by Rayleigh (1916), the laminar flow of heated fluids has 
attracted both geophysical and astrophysical interest. In  his marginal stability 
calculations Rayleigh made use of a set of assumptions, attributed to Boussinesq 
(1903, pp. 157-176), in which the thermodynamic parameters were taken to be 
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constant and the fluid was assumed incompressible, except when considering the 
body force term in the equation of motion; the buoyancy force due to thermal expan- 
sion of the fluid was retained as this force drives the flow. The use of these assumptions 
proved quite successful in early attempts to understand empirical marginal stability 
results (Rayleigh 1916; Jeffreys 1928, 1930; Low 1929; Schmidt & Miiverton 1935; 
Schmidt & Saunders 1938; Pellew & Southwell 1940). Indeed the ‘Boussinesq ap- 
proximation ’ has since been employed in the vast majority of marginal stability 
and finite-amplitude convection studies. 

Spiegel & Veronis (1960) gave criteria for the applicability of the Boussinesq ap- 
proximation to compressible fluids. In particular for a compressible liquid in which 
convection extends over a depth range d ,  and in which adiabatic compression and 
decompression occur, the ratio of d to the temperature scale height, HT, must be small 
compared to unity (d/HT 4 1) .  The scale height HT represents the vertical distance 
over which a parcel of liquid must be moved in order to change its temperature by 
adiabatic expansion or compression by a factor of e and is defined as 

HT = cp/gat (1) 

where Cp is the specific heat at constant pressure, g the gravitational acceleration and 
a the volume coefficient of thermal expansion. Mihaljan (1962) and Malkus (1964) 
developed rigorous mathematical justifications of the Boussinesq approximation, 
demonstrating that it is a self-consistent lowest-order approximation to the full 
equations of fluid flow. Malkus (1964), for example, performed a two-parameter 
expansion of the hydrodynamic equations and showed that the Boussinesq equations 
result when the two parameters AT*/To and d/HT are both small. (AT* represents 
the temperature increase in excess of an adiabatic reference .temperature and To is 
a reference temperature.) 

Although the Boussinesq approximation is valid for a number of physically interest- 
ing convecting systems, it is not applicable to studies of deep convection in, for 
example, planetary mantles, stellar interiors and the atmosphere, In  such deep Iayers 
d is comparable to HT and the influence of viscous dissipation, variable adiabatic 
temperature gradients and density gradients (effects of order d/H,) may not be 
neglected. The basic hydrodynamic equations “3)-( 6) below] must be solved retaining 
all the relevant non-Boussinesq terms. 

The Boussinesq condition on d/HT was relaxed by Ogura & Phillips (1962) and 
Gough (1969) in their one-parameter expansions for deep gaseous layers. These ex- 
pansions lead to the anelastic equations for a gas provided the relative potential 
temperature fluctuation (Ogura & Phillips 1962) or the square of the Mach number 
M (ratio of convective velocity to sound velocity) (Gough 1969) is small. In  the 
anelastic approximation @ / a t  = 0 (where p is density and t is time) and consequently 
acoustic modes do not exist. In  the limit of shallow layers the anelastic-gas equations 
reduce to the Boussinesq equations. 

In  this paper we will consider an approximate set of equations for an infinite 
Prandtl number Newtonian fluid in which it is assumed that d = O(HT) and that 
aT < 1, where T is the absolute temperature. (The Prandtl number is the ratio of the 
kinematic viscosity to the thermal diffusivity and gives a measure of the relative 
importance of viscous and inertial forces. For the Earth’s mantle the Prandtl number 
is a t  least loz2, essentially infinite.) In  gases a z 1/T (where T is absolute temperature) 
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and hence aT is O(1). The condition that aT be small thus restricts the application 
of this study to liquids and creeping solids for which a is generally small and only 
weakly dependent on T. For the liquids considered below, it can be shown that 
M 2  < 1 and accordingly elastic waves are ignored. The approximate set of equations 
derived in 3 2 below is therefore referred to as the anelastic-liquid equations. These 
equations have the virtue of being simpler than the anelastic-gas equations and 
allow us to extend our understanding of finite-amplitude convection in infinite Prandtl 
number fluids into the compressible domain in a mathematically consistent manner. 

Turcotte et al. (1974) included the non-Boussinesq effects of dissipative heating and 
adiabatic gradients in their study of incompressible steady-state convection. The 
effect of increasing d /HT in their study was to reduce the vertical heat transport. 
This was attributed to the corresponding increase of the adiabatic gradient. We will 
show that, when all the non-Boussinesq effects are retained, the variation of the 
adiabatic gradient has the dominant effect on the solutions for d /HT < 1.0 but that 
density gradients become important when d/HT > 1.0. 

The energetics of convection in compressible liquids were studied by Hewitt, 
McKenzie & Weiss (1975) and Backus (1975). These authors concluded that the 
ratio of the overall rate of viscous heating @ to the total heat flux emerging from the 
system 4' is bounded above by the expression (T,,, - Tmin)/Tmin, where T,,, and 
Tmin are the maximum and minimum temperatures in the system. Hewitt et al. 
(1975) showed further that the ratio @IFu is independent of Rayleigh number and 
proportional to d / H T .  [The Rayleigh number is the dimensionless parameter defined 
in (50) below.] Hence for T,,, > 2Znin, or d / H T  > 1 ,  @ may be greater than Fu. 
Although @IFu may be regarded as the efficiency of conversion of heat into mechanical 
energy within the convecting layer (Malkus 1973), the heat generated by dissipation 
remains within the system and @IFu is therefore not constrained by thermodynamic 
efficiency considerations to be less than unity. Hewitt et al. (1975) derived the following 
relation for a vigorously convecting system in which most of the heat is carried by 
convection: 

E = @IFu 9 (d /HT)  [ I  - 4.1, (2) 

where r is the ratio of heat generated by internal heat sources to the total flux through 
the layer. When heating is entirely from below, E = d / H T .  Equation ( 2 )  was verified 
by Hewitt et al. in the Boussinesq limit of d /HT = 0.1 17 by numerical calculations for 
a Newtonian fluid with infinite Prandtl number. That this result continues to hold 
true in the range d = O(HT)  will be demonstrated in this paper. 

In  the geophysical context, lower-mantle or mantle-wide convection would occur 
with a value of d / H T  i 0.5 if the scale height HT did not vary significantly with depth. 
When phase changes in the upper mantle occur, adiabatic temperature and mean 
density distributions experience abrupt changes in gradient and the locally defined 
scale height also changes, primarily due to sudden variations in a. In  such cases a 
mean scale height can be determined from the total change in density across the 
layer of interest. Taking values of density equal to 3.3 g/cm3 at the top of the mantle, 
4.4 g/cm3 a t  700 km depth and 5.5 g/cm3 at the core mantle boundary (Press 1970) 
and using the definition of an adiabatic-hydrostatic density distribution given in 
(15) below, mean values of d /HT are 0.3 for upper-mantle convection (0-700 km) and 
0-6 for mantle-wide convection. However, uncertainties in the values and variations 
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of the physical parameters of the deep mantle are sufficiently large to preclude 
the usefulness of detailed Earth modelling. A general study of compressible convection 
in an infinite Prandtl number fluid is likely to be more profitable; general aspects of 
the physics of compressible flow thus revealed might then be applied in theoretical 
interpretation and speculation. The latter approach has been taken in this study. 

A two-dimensional time-dependent numerical model has been developed for infinite 
Prandtl number Newtonian fluids in order to investigate the effects of compressibility, 
viscous dissipation, adiabatic heating and non-hydrostatic pressure gradients on the 
flow, energetics and stability of deep convecting layers. This model represents a 
further development of that described by McKenzie, Roberts & Weiss (1974) for 
incompressible liquids. Comparisons between results of the compressible and in- 
compressible models will be made to iIlustrate the effects of increasing the vaIue of 
d / H T .  The approximations and assumptions involved in the mathematical formulation 
of the compressible problem are outlined in the following section. A linear stability 
analysis of the governing equations is then briefly discussed in Q 3 and results of the 
nonlinear finite-amplitude modelling are presented in Q 4 for the range of values 
0.1 < d/HT < 1.5. 

2. Mathematical formulation 
The relevant equations describing time-dependent laminar convection derive from 

the principles of conservation of mass, momentum and energy. These may be written 
as 

g + v . ( p u )  = 0, (3) 

p(;+u.v") = - v P + p g + -  a 
ax, rw 

aUi - + u . [VT - (VT),] = V . (KVT) + H + T~~ -, 
ax$ 

aT aT aP 

(4) 

where p is the density, t time, u the velocity vector, P pressure, r i j  the deviatoric 
stress tensor, (VT), the adiabatic temperature gradient, K thermal conductivity and 
H the rate of internal heat generation. Summation over repeated indices is implied 
in the terms involving the stress tensor. The term (VT), in ( 5 )  is given by 

aT 
(VT), = - VP. 

PCP 
Equations (3)-(5) must be supplemented with an 
form 

P = P(T,P).  

(6) 

equation of state, usually of the 

(7) 

In  a Newtonian fluid, the deviatoric stress tensor r,, is related to the velocity field 
through the dynamic viscosity 7, and 'second ' or ' bulk ' viscosity qz, as 

The bulk viscosity, associated with rapid changes in volume, depends on the relative 
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rates of volume change and molecular relaxation processes (Landau & Lifshitz 1959). 
Since volume changes in mantle convection occur over times greater than lo7 years, 
q2 is assumed to be unimportant and the last term in (8) is ignored. For infinite Prandtl 
number fluids, inertial forces are ignored and the left-hand side of (4) vanishes. Sub- 
stituting from (8), (4) may therefore be written as 

0 = -vp+pg+-r] -++ -%Vq(V.u). 
:$ (;:; i:*) (9) 

The fluids considered in this study have the following physical and thermodynamic 
parameters assumed constant throughout: g ,  C,, a, K ,  r ]  (defined above) and I? 
(Gruneisen’s parameter). The latter is defined as 

where K ,  and KT are the isentropic and isothermal moduli of bulk compressibility 
and C, is the specific heat at constant volume. These assumptions are made to simplify 
the mathematics and to reduce the number of variables of the problem. Since r] = p v  
(where v is the kinematic viscosity) and p varies, either r] or v or both must also vary. 
Choosing 7 to be constant allows a simple expansion of the viscous force term in (9) 
and determines v as r]/p. For most liquids, r is approximately constant and of order 1. 
Assuming I’ to be constant eliminates the bulk moduli as independent parameters. 

A reference state with hydrostatic pressure, PH, and adiabatic temperature distri- 
bution T,, is considered. Provided that fluid motions cause only small departures from 
this reference state, the equation of state may be written as a linear Taylor expansion 
ofp about the reference state density distribution pr as 

p(T,  P) = prr 1 - a(T - T,) + K!W - PH)I, (11) 

where a = p;l(apr/aT),, and KT = p,(aP/ap,),. An expression for the reference 
density distribution pr is readily derived by considering the gradient of p,(S, PR), S 
being the entropy per unit mass: 

VPr(S,P,) = ( $ ) p H  vs+ (%),VPH. 

Since the reference state is adiabatic V S  = 0, and since VP, = (0, 0, -pr g ) ,  (12) re- 
duces to 

- - g  (B) = -gp,/K,. Ex- W H  s 

Using (lo), (13) may be written as 

which expresses the well-known Adams-Williamson relation for a chemically homo- 
geneous adiabatic density distribution under hydrostatic pressure (Birch 1952). 
Since I? is assumed constant, (14) may be integrated over z to give 

P A Z )  = p o e x ~  ( d - z ) / G r ,  (15) 
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where po = pr(z = d )  is the value of pr at  the upper surface. Substitution of (15) into 
(1 1) gives the equation of state 

(16) p(T,P)  = ~ ~ e x p [ ( d - - z ) / H ~ r 1 [ 1  --4"-%) +K2P11, 
where Pl = P - PH. 

2.1. Dimensionless variables 
For ease of numerical manipulation, all physical variables are converted into dimen- 
sionless form. Following the approach of McKenzie et al. (1974), characteristic values 
of depth, temperature, density, velocity and time [d ,  Tl = 1/K, po, U = gaTld2/vo 
(where vo = T/po is the value of v at the upper surface) and r = &/U respectively] 
were chosen and all variables were expressed in terms of these units. The resulting 
dimensionless (primed) variables are 

} (17) 
(z', 2') = (2, z ) / d ,  p: = PJPO = exp [(I - 2') D p I ,  p' = p/po, 

T' = (T-To)/Tl, t' = t / T ,  Pi = P,d/UT = PlaTlpogd, 

where D = d/H, and To is the temperature of the upper boundary. The scaling of 
Pl is derived by considering the horizontal component of (9) and comparing the non- 
hydrostatic pressure gradient and viscous force terms. The dimensionless thermal 
diffusivity, energy generation rate and box width are 

K; = ~ ~ v ~ / g a T ~ d ~ ,  = ~ ~ v ~ / g a T ~ d ,  h = L/d ,  (18) 
where L is the dimensional box width and eo = H/poCp. 

2.2. The anelmtic-liquid approximation 
All equations in this section will be expressed in terms of the dimensionless variables 
defined above, with primes suppressed. In  this notation, the equation of state (16) 
becomes 

where p = aT,. Thus to order p, p = pr and (as in the Boussinesq approximation) for 
p < 1 slight deviations in p from the reference state value may be ignored, except in 
the body force term of the momentum equation, where the temperature and pressure 
dependence of p will be seen to provide the driving force for the flow. For simplicity 
we have chosen TI = 1 OK. In  the geophysical case, a w 10-5 "K-1 for mantle-type 
materials and the condition p < 1 can therefore accommodate a large range of values 
of Tl. Using (lo), K ,  may be expressed in terms of I" and (19) may be written as 

P = ~r[1-p(T-27,)+pu(~ogd/K,)PlI, (19) 

P = ~ r { l - ~ u ( T - % ) + ~ u ( D / ~ r r )  +prTOexp{(l-z)D)IPl). (20) 

Elastic waves are eliminated from the hydrodynamic equations by setting @/at = 0 
in (3). This is permissible when M2 < 1.  By balancing buoyancy and viscous forces, 
we obtain a characteristic velocity as U = gaTld2/vo, while the velocity of sound is 
given by G = (1*8K,/p)* = (1-8C, r/a)i .  Hence 

M 2  = U2/C2  = (d/HT)puR*/(l*8Pr) = O(pPr-l) < 1, 

where R*, which has the form of a Rayleigh number, is the inverse of the dimensionless 
thermal diffusivity. The dimensionless continuity equation may therefore be written 
as 

v .pu = 0. (21) 
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Assuming p < 1,  all terms of order p compared to other terms in the same equation 
can be ignored. Hence, from (20) ,  to order p, V .p,u = 0 or 

(22 )  
Restricting the flow to the x, z plane, ( 2 2 )  shows that u exp ( - z D / r )  is solenoidal 
and hence may be represented by a stream function $ such that 

Thus from (23)  we obtain the velocity as 

V . [u exp ( - zD/I')] = 0. 

u exp ( - z D / r )  = ( - a$/az, 0, a$/ax). (23 )  

where u and w are the x and z components respectively of u. 
The stream function $ can be related to the vorticity field o through (24) since 

w = V x U. Thus, assuming that the velocity does not vary in the y direction, w has 
a y component only, w ,  such that 

(25)  
Vorticity is related to the temperature and non-hydrostatic pressure by taking the 

curl of the (dimensionless) momentum equation and substituting from (20)  for p;  

V2$ + ( D / F )  a$/& = - we-zD/r. 

thus 

or, to order p, 

This equation is similar to its counterpart in the Boussinesq formulation, the differences 
being the non-hydrostatic pressure term and the scaling factor exp (( 1 - z) D/F) ,  
which accounts for the hydrostatic compression of the liquid. From the x component 
of the momentum equation we have 

which enables the pressure term in (27 )  to be eliminated; thus the vorticity equation 
becomes 

In the thermal energy equation ( 5 ) ,  the term aP/at may be written as aPl/at since 
the hydrostatic component is time-independent, and the viscous dissipation term, 
rs,au4/axj, can be expressed in terms of $ through the use of (24 )  and the dimen- 
sionless form of (8); this yields the dimensionless energy equation 

aT ap1 
at at 

p- - pDT - = - V . Tpu - pD(T + To) w + p D T u  . VP, + K0V2T + eo + DeaDlr 

or, to  order p, 
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Anelastic-liquid equations (p < 1) Bowinesq equations (p, D < 1)  

( B l )  V'O = aT/ax 

TABLE 1. A comparison of anelastic-liquid and Boussinesq equations 

In  the Boussinesq limit D approaches zero and (31) reduces to the expression for in- 
compressible flow (Hewitt et al. 1975). 

The coupled thermal energy and momentum equations (5) and (9) are now replaced 
by (26), (29) and (31) which together with (24), for given initial and boundary condi- 
tions, completely determine the velocity and temperature fields as functions of space 
and time. Thus when p < 1 non-hydrostatic pressure fluctuations are ignored every- 
where except in the body force term in the equation of motion, wherein buoyancy is 
generated entirely by terms of order p. Table 1 summarizes the equations derived 
above and juxtaposes the corresponding Boussinesq equations. In  the limit of vanish- 
ingly small d/H,,  the anelastic-liquid equations reduce to the Boussinesq equations. 

2.3. Model boundary conditions 
'Free ' horizontal boundaries are assumed (i.e. normal velocities and tangential 
stresses vanish) and 9 is assumed to be an odd function of x and periodic with period 
2h. This implies .mirror symmetry about vertical planes a t  x = 0, k A, k 2 4  etc. 
and the numerical calcuIations are therefore confined to the dimensionless rectangular 
region 0 Q x < h and 0 Q z < 1.  The temperature a t  the upper boundary (z = 1) 
and the heat flux across the lower boundary (z = 0) are held constant. These conditions 
imply 

= O' "'I * = o ,  w = o  a t  z =  0, 1 and 

T = To (a constant) at z = 1, 

- 0  aT 
ax 
-- at x = O,h, 

aT - = P (a constant) at z = 0, 
az 

where F is the dimensionless heat flux supplied to the base of the layer. In  terms of 
dimensiona1 variables (in parentheses) P is given by 



Convection in a compressible j u i d  523 

where Fb is the dimensional flux across the bottom boundary. 
The Nusselt number is usually defined as the ratio of the heat flux through the 

convecting system to the heat flux which would exist in a purely conducting state 
characterized by the same parameters. However, because of the constant flux bottom 
boundary condition, this definition always yields a value of unity. In  this case it is 
the mean temperature of the layer, rather than the heat flux across it, which changes 
when convection begins. Accordingly we define a modified Nusselt number N as 

where TCond is the mean temperature which would exist in the absence of convection 
and is the actual mean temperature. For conduction solutions (34) gives N = 1.0. 

3. The linear problem: onset of convection 
The purpose of this section is to determine the conditions for marginal stability in 

a compressible liquid governed by the anelastic-liquid equations derived above. 
The results of this study can then be used as a test of the nonlinear solutions in the 
limit of weak convection. 

Jeffreys (1926, 1928) extended Rayleigh’s (1916) initial work on marginal stability 
and introduced a dimensionless number, now generally referred to as the Rayleigh 
number, which combines the relevant physical and geometrical variables: 

R = ga/3d4/(h-v), (35) 

where /3 is the magnitude of the temperature gradient across the layer. The critical 
value of this number, R,, which must be exceeded before convection can occur, is 
independent of the fluid properties. Jeffreys (1930) also considered the marginal 
stability of compressible fluids. In particular he showed that if /3 is interpreted as the 
magnitude of the temperature gradient in excess of the adiabatic gradient, then the 
condition for the onset of convection in a compressible fluid is the same as in an in- 
compressible fluid. This approach is useful in gases (Spiegel 1971; Graham 1975) for 
which aT w 1 and the adiabatic gradient -glC, is constant [see (S)]. However, 
when a is a constant (as in the present study), the adiabatic gradient is proportional 
to T and decreases in magnitude from bottom to top across the layer. Consequently 
the Rayleigh number is not uniquely defined for such a liquid layer. Furthermore 
( K U ) - ~  = p2C,(K~)-1 and p varies across the layer. Choosing the mean density i j  as a 
representative value of p, we can simply define 

where /3, is the magnitude of the imposed temperature gradient. R, is a uniquely 
defined dimensionless parameter of the system and may be interpreted as a non- 
dimensional temperature gradient. It has the same form as the classical Rayleigh 
number and accounts for the density variation across the layer. It does not, however, 
give a true indication of the stability of the layer when compared to the usual value 
of the critical Rayleigh number (385 for the boundary conditions of this study). 
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In  this section we will determine the critical values of R, for the onset of convection, 
for discrete values of the ratio dlH,.  Due to the stabilizing influence of the adiabatic 
gradients and the density stratification, we can expect the critical value of R, to 
increase with compressibility. 

3.1. Perturbation equations 
We consider small perturbations to a basic steady state and write 

u = u b  + u', 
T = T,+T', (37) 

where U' and T' are small quantities and the subscript b refers to the basic state. 
When the basic state corresponds to the conduction solution, we have 

(38) KodeTb/dz2 = -Eg .  (02 09 0 ) 9 1  

u b  = ( u b ,  0, wb) = 

Substituting (37) and (38) into the dimensionless energy, momentum and continuity 
equations, and linearizing with respect to the small quantities u' and T' yields 

paT'/at = -pw'dT,/dz-pD(Tb+T,) W' + K ~ V ~ T ' ,  (39) 

V .  U' = w'D/I', (41) 

where p = exp [( 1 - z )  D l r ] ,  u' and w' are the x and z components of u' and we again 
use the notation D = d/H,. 

We represent the two-dimensional temperature and velocity perturbations as 

(42) 
T'(x, z,  t )  = e(z)  exp (ikx+ d) ,  

u'(x, 2, t )  = [U(z),  0, W(z)]  exp (ikx+ ut), 

where B(z), V(z),  and W(z)  are complex vertical eigenfunctions of the temperature 
and velocity component perturbations, u is a complex eigenvalue referred to as the 
growth rate and k is a real variable referred to as the wavenumber. Chandrasekhar 
(1961) proved that the imaginary part of cr is always zero for the Rayleigh-BBnard 
problem and hence that u may be treated as a real variable. However this cannot 
be shown for more complicated problems such as internally heated or compressible 
liquids, and Skilbeck (1976) has found complex growth rates in internally heated 
liquids. Consequently we retain the complex form of u in our calculations. If the 
dimensionless horizontal half-wavelength of the perturbation (the ratio of the width 
of the cell to the depth of the layer) is represented by A', then the wavenumber is 
defined as k = .n/h'. 

Considering liquids heated entirely from beIow (6, = 0), dzTb may be written as 
-Do, a constant, and Tb = ( 1  -z),9,, [see (38)]. Thus with o' = V x u', substitution of 
(42) into (39)-(41) yields 

1 

p r e  = p wp, -PD[T, + (1 - 2) pol w + Ko(d: - e, (43) 

(dz-k2)(- ikW+dZU) (dk-k2)  C+-ikW , (44) 3r " I  
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i kU+d ,  W = (D/I’) W, (45) 

where d, has been written in place of d/dz. 
Equations (43)-(45) are solved numerically using the propagator matrix technique 

(Gilbert & Backus 1966). Details of the numerical procedure are described in appendix 
A. By incorporating a search scheme into the computer programs, the possible values 
of any one parameter can be determined as a function of the others. Of particular 
interest are neutral curves for marginal stability (the behaviour of Po, and therefore 
of R,, versus k when cr is equal to zero) and growth rate curves (the behaviour of cr 
vs. k ) .  

3.2. Results 
Neutral curves, R, vs. k, are shown in figure 1 for the limiting case of D -+ 0 and for 
values of D equal to 0.1 17, 0.25, 0.50 and 1.00. Curves for the latter three values are 
labelled A ,  B and C respectively and have the same values of K, as for the corres- 
ponding series of non-linear models (see table 8). For D -+ 0.0 and D = 0.117, 
K, = 0.00436. Values of I? and To were 1-1 and 273 respectively for all cases. 

The fundamental curves for D += 0.0 and D = 0.11 7 are shown in order to emphasize 
the point that in the compressible formulation R, does not represent the classical 
Rayleigh number; since the adiabatic gradient is included in its definition, R, will 
be larger than the classical Rayleigh number even in ‘incompressible’ liquids. It is 
only in the limit of D -+ 0.0, when the compressible equations reduce to the Boussinesq 
equations, that R, has the same meaning as the Rayleigh number. (Nevertheless the 
minimum of R,, for D = 0.117, occurs a t  almost the same value of k as for D -+ 0.0.) 
When D + 0.0, R, has a minimum value of 385 a t  k = 1-76 in agreement with previous 
calculations (e.g., McKenzie et al. 1974; Skilbeck 1976). 

Curves for the three most unstable modes are shown in figure 1 for the remaining 
values of D. The number of internal nodes, n, in the vertical velocity eigenfunction 
is indicated at points on the curves. At low values of D, the fundamental (i.e. most 
unstable) mode has no internal nodes and each successive higher mode has one addi- 
tional node. At larger values of D, however, zero-node disturbances are inhibited; at 
D = 0.50, n = 1 for the fundamental mode (in the range of wavenumbers n < k < 3n) 
and at  D = 1-00, n = 2 or 3. 

This may be understood by considering figure 2 which shows examples of tempera- 
ture and entropy profiles, and vertical-velocity eigenfunction structures, a t  values of 
D = 0.25, 0.50 and 1.00. The unstable upper regions are shown as zones of super- 
adiabatic temperature gradient or negative entropy gradient. The stabilizing effect 
of the adiabatic gradient increasing in magnitude with depth, and with D, is clearly 
seen in the velocity perturbation eigenfunction structure. The zone of large amplitudes 
is concentrated upwards as D increases and small countercells occur, a t  large D, in 
the gravitationally stable lower zone. The uppermost cells are driven by thermal 
instability while the lower cells are driven by viscous coupling to the upper cells. 
The uppermost cells extend well into the stable zone; in the finite-amplitude solutions 
discussed in 3 4, the gravitationally unstable zone itself extends to the bottom of the 
layer a t  large values of R,. We will define these two effects as ‘overshooting’ and 
‘penetration’ respectively. It is noteworthy that the upper cells in figure 2 never 
overshoot beyond the point of zero entropy change. (If 8, is the value of S at the 
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FIGURE 1. Neutral curves (loci of zero growth rate) for various values of D. Curves for the 
fundamental mode only are shown for D -+ 0.0 and D = 0.117. Curves for the three most un- 
stable modes are shown for D = 0.25 (curves A ) ,  D = 0.50 (curves B )  and D = 1.00 (curves C). 
Numbers on the curves indicate the number of internal nodes in the vertical velocity eigen- 
function. Arrowheads indicate the critical value of R, at each value of D. 

deepest point of overshooting and S,,, the maximum value of S, then for D = 0.50 
and D = 1.00 we have Sd/Smax = 0.30 and 0.25 respectively.) 

The lowest value of R, on the fundamental neutral curve, for each value of D, is 
referred to as the critical value and is written here as e ( D ) ;  the corresponding critical 
wavenumber is written I@). The critical points [R!?(D), kc(D)] are indicated on figure 
1 with small arrows, and tabulated in table 2; the dotted line joining these points on 
figure 1 illustrates a general trend of increasing critical wavenumber with increasing D. 
This effect is presumably due to the shallower depths of the unstable regions at large 
values of D, the horizontal wavelength being reduced in a Bhallower layer. 

In  a layer of unrestricted horizontal dimension, the onset of convection should occur 
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FIQWRE 2. Vertical profiles of temperature T, adiabatic temperature T,, entropy S, and vertical 
velocity eigenfunction W, at  points on fundamental neutral curves: (a) D = 0-25, k = 71, 

R, = 4-67 x lo4; ( b )  D = 0.50, k = 271, R, = 2.62 x 10'; (c) D = 1.00, k = 271, R, = 1.84 x 10'. 
The temperature difference across the layer, Po, varies from one case to the next and T scales 
have been adjusted mcordingly. Entropy is measured relative to the surface value. W is plotted 
with arbitrary amplitude. Bars on the z axes of the W profiles indicate the location of internal 
nodes. The horizontal line divides gravitationally stable and unstable regions. 

D x kc Az-1 

0.00 384-70 1-76 26 
0.117 9 109.2 1.79 25 
0.26 48 751 2-90 26 
0.60 260116 4.46 100 
1.00 1 897 970 6.92 200 

TABLE 2. Critical values of R,, k and the spatial increment 
of the numerical solution Az 

a t  the critical points indicated on figure 1. However, in the nonlinear numerical 
solutions discussed in the following sections, all streamlines are confined to a hori- 
zontal extent equal to the depth of the layer and, consequently, an integral number 
of rolls must fit within this region. Possible values of A' are therefore restricted to 
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k = n  k = 2n k = 3n k = 4T - - - - 
D RO n Ro n RO n RO n Az-1 

0.00 686-8 0 2846 0 10697 0 29632 0 26 
0.117 9310 0 11690 0 19916 0 40124 0 26 
0.26 48697 0 61133 0 60212 0 82199 0 26 
0.50 261487 1 262230 1 275994 1 307377 0 100 
1.00 1897320 2 1842120 3 1856880 3 1920230 3 200 

TABLE 3. Discrete values of Ro at k = nan for m = 1, 2, 3 and 4, corresponding number of 
internal nodes (n) in W(z) ,  and the spatial increment of the numerioal solution, Az 

1, i,+, ... and hence possible values of k are n, 2n, 3n ... . Accordingly, it  is the 
lowest value of R, at these discrete values of k which is of interest for comparison with 
the nonlinear results. Table 3 summarizes the values of R, and n occurring a t  k = n, 
2n, 3n and 4n on the most unstable of each set of curves. At D = 0.0, 0.117 and 0-25, 
kc = n and n = 0; that is, one roll occupying the whole box is the most unstable mode. 
At D = 0.50, kc = n and n = 1; two cells, one above the other, fill the box. However 
the minimum of R, occurs almost midway between k = n and k = 277, which results 
in R, differing by less than 0.3% at these two points. As seen below (54.2.2) a two- 
roll wide marginal flow persists in the nonlinear model B1 (presumably due to the 
restrictive influence of the side walls). In  this case the nonlinear solution must be 
compared to the linear predictions at k = 277. At D = 1.0, kc = 2n with n = 3; the 
pattern is two rolls wide and four rolls deep. (The flat appearance of the upper curves 
in figure 1 is exaggerated by the use of a logarithmic scale for R,; table 3 gives a 
clearer indication.) 

Growth rate curves, u vg. k, are useful in establishing the correct sequence of the 
various modes. For a given value of R,, the numerical scheme searches (in the neigh- 
bourhood of initial estimates) for possible values of u at specified values of k. To 
ensure that no modes are missed, initial values of u are supplied at k = 0, a t  which 
point all possible values can be determined independently. 

In  the limit of k = 0, (43)-(45) combine to give 

(KO d: - pc)  {p-yd: - ( q r  12 q> w = 0, 

Q(z )  = p- ' [4  - (D/rP@l wy 
(d: - pa ' )  Q(z)  = 0, 

(46) 
or, defining 

(47) 
(46) can be written as 

(48) 
where we have written u' for u/K,,. Q(z)  is a horizontally uniform temperature pertur- 
bation. From the equation of motion (44) and the boundary conditions on 8, we have 
d,Q = 0 at z = z,, and Q = 0 at z = zl, as boundary conditions on Q. Solving the 
relatively simple eigenvalue problem posed in (48) yields the possible values of c' 
at k = 0. In  the limit of D --f 0, p = 1.0 and &(z) has a solution of the form 

Q = Acos ( -u )~z ,  (49) 
with u' = - (n - &)z n2 for n = 1,2,3, . . . . For finite D, however, p = exp [( 1 - z )  D / r ]  
and no such simple expression exists. Qualitatively, since p ( z )  is greater than or 
equal to one for all z, we can expect the magnitude of the igenvalues u' to decrease 



Convection in a compressible fluid 629 

i D + 0.00 D = 0.26 D = 0.50 D = 1-00 

1 - 2.47 - 2.1 - 1.8 - 1.3 
2 - 22.2 - 19.7 - 17.4 - 13.6 
3 - 61.6 - 64.8 - 48.7 - 38.1 
4 - 120.4 - 107.3 - 95.4 - 74.9 

TABLE 4. Values of 4 at k = 0, for i = 1, 2, 3 and 4 

with increasing D. The first four values of u’ computed from (48) a t  each value of D 
are listed in table 4. These are used as estimates at  low values of k (e.g. k = 0.01) and 
the search program follows the d ( k )  curves out in small steps dk. 

Figure 3 shows examples of growth rate curves for the first four modes. It is clear 
from figure 3 (a )  that the points (R, = 1.86 x 106, k = 4-5) and (R, = 1.86 x lo6, 
k = 9.8) lie on the neutral curve of the most unstable mode a t  D = 1.00. We have 
plotted only the real part of u’, denoted Re (u’), on this diagram. Inspection of (43)- 
(45) shows however that, for every eigenvalue u, its complex conjugate u* is also an 
eigenvalue with corresponding eigenfunctions IT*, W* and 0*, the complex conjugates 
of C ,  W and 0. Thus when u is complex two distinct modes may have equal real parts 
and their growth rate curves will appear to merge on diagrams such as those shown 
in figure 3. Complex values of u were a common feature in this study; an example is 
shown in figure 3 ( b )  wherein the upper two curves merge for 0.25 < k < 0.55. No 
complex growth rates were encountered when Re [u (k ,  R,)] first became positive and 
therefore no overstable marginal solutions were found; the principle of exchange of 
stabilities is obeyed. However there is nothing inherent in the mathematics to guaran- 
tee that u will be real whenever Re (u) > 0. 

Table 3 presents the principal results of this section. To compare these data with 
the nonlinear solutions, refer to figures 11 (a) ,  12 (a )  and 13 (a )  which show low Rayleigh 
number solutions for the three series of nonlinear models. The number of internal 
nodes, n, in the vertical velocity/streamfunction and the wavenumber, k ,  are tabu- 
lated for each of these solutions in table 5. Comparison of tables 3 and 5 shows agree- 
ment on the structure of marginal convection (i.e. the same value of n for equal 
values of k). The critical values of R, a t  wavenumbers corresponding to those in 
table 5 have been converted into critical values of heat flux and plotted as large solid 
circles on the ‘conduction’ line in figure 16. The close agreement of these points with 
extrapolations of the three curves labelled A ,  B and C is a measure of the consistency 
between the linear and the nonlinear solutions. 

3.3. Accuracy of the numerical results 
The values of u‘(k = 0 ) ,  listed in table 4, are indicated as solid circles on the k = 0 
axis in figures 3 (a) and 3( b ) .  These agree closely with the values determined by the 
search program a t  low k .  Having established the eigenvalues at k = 0 it  is straight- 
forward to integrate (46) numerically to compute the shape of the eigenfunction W ( z ) .  
This has been done and compared with W ( z )  as computed from the propagator matrix 
[equation (70)] at k = 0.01, for the first four modes at each value of D. Corresponding 
eigenfunctions agree in every case with a maximum discrepancy at any point of 3 yo 
and a mean of less than 1 “/o. 
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FIUIJRE 3. (a) Growth rate curves for R, = 1.86 x 106, D = 1.00. Curves for the first four modes 
are shown. Large solid circles on the Re (u’) axis are the values of u’(k = 0) predicted by solving 
(59) and tabulated in table 3. (b) Growth rate curves for R, = 2.62 x lo6, D = 0.50. The first 
and second modes have complex values of u‘ for 0.25 < k < 0.55. The most unstable mode has 
Re (a’) > 0 and Im (r’) = 0 for 2.90 d k < 6.28. 
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Series D n k 
A 0.25 0 77 
B 0.50 1 2n 
c 1-00 3 277 

TABLE 5. Cell structure of nonlinear marginal convection solutions 

A similar linear stability analysis was performed by Peltier (1972) who included 
the non-Boussinesq feature of adiabatic temperature gradients proportional to 
temperature. His results are in qualitative agreement with those presented above. 
However a direct comparison is not possible since Peltier used rigid boundaries with 
fixed temperatures, and ignored compressibility and non-hydrostatic pressures. 
Furthermore To was taken to be 0 OK in Peltier's analysis so that the stabilizing 
influence of the adiabatic gradients was minimized; with this surface temperature 
no internal nodes in the vertical velocity are found until D > 2-25. 

As a final check of our numerical results, we have run four cases using the same 
boundary conditions as Peltier and suppressing the density variation and non- 
hydrostatic pressure fluctuations. Resultant values of RZ, kc and n (the number of 
internal nodes in the vertical velocity eigenfunction) for values of D covering the 
range studied by Peltier are listed in column 2 of table 6. These may be compared 
with Peltier's figures listed in column 1 of table 6. At the largest value of D, the two 
values of RE differ by approximately 504, values of kc by 1.504 and the eigenfunction 
structure is the same. At D = 1.0, the upper limit in our study, the two numerical 
schemes agree to within 0.2 "6. The divergence of the two numerical schemes at  larger 
D is presumably due to differences in the numerical integration procedures employed. 
These checks give us confidence in the accuracy of the numerical scheme. 

3.4. Influence of density variations and non-hydrostatic pressure 

The separate effects of variable density and non-hydrostatic pressure gradients are also 
shown in table 6 (columns 4 and 5 respectively). The stabilizing effect of variable 
density (compare columns 3 and 4) remains relatively small for D < 1-0 (<  12%) 
but becomes a major effect at D = 3.0, increasing the critical value of R, tenfold. 
Inclusion of non-hydrostatic pressure gradients is also seen to increase stability 
(compare columns 3 and 5).  This effect however remains relatively small even for D 
as large as 3.0 ( 6 11 yo). 

As emphasized by Peltier (1972), the effect of a non-zero surface temperature To 
is to increase stability since the magnitude of the (stabilizing) adiabatic temperature 
gradient is proportional to the absolute temperature. A t  D = 1.0, values of shown 
in table 3 (computed with To = 273 OK) are two orders of magnitude larger than 
those-in table 6 .  This marked difference cannot be due to the weakly stabilizing effects 
of density stratification and non-hydrostatic pressure, and thus demonstrates an 
extreme sensitivity of the calculations to the value of To. Non-zero surface temperatures 
also appear to minimize the significance of the non-hydrostatic pressure since, as 
discussed in 5 4 below, when horizontal pressure gradients are suppressed, the values 
listed in table 3 are altered by less than 0.03 % (in contrast to the 3 % difference indi- 
cated in table 6 ) .  
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Before returning to the nonlinear problem we note that R, may also be written in 
terms of the thermometric heat flux across the layer, fo = - K, d T / d z  = K ~ P ~ .  Thus 

This definition is useful for the finite-amplitude convection models sincef, is specified 
as a boundary condition a t  the lower boundary, whereas temperature gradients vary 
across the convecting layer. In  the conductive limit (50) and (36) are identical. In the 
remainder of this paper, we will refer to R, as defined in (50)  as the Rayleigh number. 

4. Nonlinear model solutions 
Given an initial temperature field the anelastic-liquid equations ( A  l)-(A4), listed 

in table 1 above, can be solved cyclically to generate the temporal development of 
T, w, 9 and u. The finite-difference method used to solve these equations is described 
in appendix B. Equation ( A  1 )  shows that vorticity is generated by horizontal gradients 
of temperature and pressure, the importance of the pressure gradient increasing with 
d / H T .  However, as discussed in appendix B, we find that the solution of a truncated 
version of ( A  1 ) , 

provides a close approximation to w .  Thus, as in Boussinesq fluids, vorticity is gene- 
rated primarily by horizontal temperature gradients. 

V2 w = p p  aT/&, (51) 

4.1. I n  the Boussinesq limit 

As a preliminary study, a comparison is made between the incompressible model of 
McKenzie et al. (1974) and the present anelastic model in the Boussinesq range of 
d / H ,  < 1. Two examples (figures 4, 5) are considered with d / H T  = 0.117. The two 
Boussinesq models have R, = 2.4 x 106 and R, = 1.4 x 106, with no internal heating 
( E ~  = 0). The corresponding anelastic models with the same thermodynamic para- 
meters have R, = 2.7 x lo5 and 1.6 x lo6 respectively (the differences in R, between 
the Boussinesq and anelastic cases being due to the density variation in the anelastic 
models). The solutions are similar but, as expected, the isothermal core of the Bous- 
sinesq temperature solution is replaced by an adiabatic core in the anelastic case. 
To facilitate comparison of the temperature solutions, an (horizontally uniform) 
adiabatic temperature field was subtracted from the anelastic model temperatures. 
Contours of the resulting temperature fields (figures 4c, 5 c )  are very similar to those 
of the Boussinesq model. These results demonstrate that the incompressible-liquid 
solutions are accurate representations of compressible flow for the case d /H,  = 0.Tl7. 

The mean temperature of the convection rolls is higher in the compressible solutions. 
This is due to the (slightly) reduced vigour of convection resulting from non-zero 
adiabatic temperature gradients. The importance of this effect diminishes as the heat 
flux, F = -KaT/az, at the bottom boundary is increased. With the constant flux 
bottom boundary condition, a higher mean temperature corresponds to a lower 
convected heat transport and hence a smaller Nusselt number [see equation (34)]. 
In  the anelastic cases shown in figures 4 and 5, the respective computed Nusselt 
numbers were 30 yo and 14 yo lower than in the corresponding Boussinesq solutions. 
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FIUURE 4. Comparison of Boussinesq and anelastic numerical solutions of dimensionless tem- 
perature, vorticity and stream function, for d/HT = 0.117. (a)  Boussinesq solution from Mc- 
Kenzie et al. (1974); R, = 2.4 x lo5. (b )  Anelastic solution Bousl; R, = 2.7 x lo5. The difference 
in values of R, in (a)  and (b )  is due to the density increase with depth in the anelastic caae. All 
other parameters are the same for (a) and (b ) .  ( c )  Temperatures resulting from the anelasltic 
solution after subtracting an horizontally uniform reference adiabatic temperature field. The 
anelastic solution was computed on a 48x48 finite-difference grid. Contour levels: T, 
0 (21.8) 218; w, 0 (0.43) 3.01; @, 0 (0.021) 0.147. Values in parentheses indicate contour inter- 
vals. Contours of T - T, are plotted with the same interval as T. 

Values of the ratio @IF were also computed from the two anelastic solutions. 
These were 0.107 and 0.113, in reasonable agreement with (2). The value of 0.107, 
for the lower Rayleigh number model, is lower than that predicted from (2) because 
not all of the heat is being carried by convection. In  the higher Rayleigh number case, 
convection is more vigorous and agreement is better. 

A point of great concern in all numerical modelling studies is the accuracy and 
internal consistency of the numerical solutions obtained. Outside the Boussinesq 
limit, solutions independent of those presented here are not available for comparison. 
The model must, therefore, rely upon internal checks. One such check requires that 
in a steady state the vertical energy flux F', defined as 

F' = ( ~ C , T W ) + ( - K ~ T / ~ Z ) + ( - T ~ ~ U ~ ) ,  (52) 

where ( ) denotes the horizontal average, be constant. The first two terms on the 
right-hand side of this equation represent the convected and conducted vertical 
heat transport respectively. The third term represents the vertical transport of 
energy by viscous forces and is O(d/H,) .  The maximum deviation of F' from the 
bottom value, F ,  is reported as a percentage of F for each model (typically 1-5 "4) 
and denoted d F .  For the anelastic models in figures 4 and 5, the respective values of 
dF are 1.04"1~ and 1-S9~0. 

A second internal check is provided by integrating the thermal energy equation in 
steady state over the volume V of the convecting region. This yields the relation 

a n 

r i j (8uf /8xj )dV = - (53) 

The left-hand integral in (53) represents the global rate of dissipative heating, while 
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FIGURE 5. Comparison of Boussinesq and anelastic numerical solutions of dimensionless em- 
perature, vorticity and stream function, for d / H T  = 0.117. (a) Boussinesq solution from 
McKenzie et al. (1974); R, = 1.4 x 10'. (b) Anelastic solution BOU82; R, = 1.6 x 10'. ( c )  Super- 
adiabatic temperature field computed from anelastic solution as in figure 4. Anelastic solution 
computed on a 48 x 48 finite-difference grid. Contour levels: T, 0 (75.0) 750; w ,  0 (1.063) 8.504; 
$, 0 (0.047) 0.329. Contours of T - T, are plotted with the same interval as T. 

the right-hand integral represents the global rate a t  which work is done by the fluid 
in adiabatic volume changes. Thus in steady state, internal energy is provided by 
frictional heating at the same rate as it is absorbed by the compression work cycle. 

In the hydrostatic approximation VP w VP, = -pyg6,, where Q, is a unit vector 
in the positive z direction, so that (53) becomes 

where A is the area of the layer, and the integrand on the right-hand side is the hori- 
zontally averaged convected heat flux a t  height z. The left- and right-hand integrals 
of (54) were evaluated numerically from the solutions of all models. Since the viscous 
heating is a strongly localized function of space, while the work done in adiabatic 
volume changes is relatively uniform (figure 6), numerical integration of the right- 
hand side of (54) can be expected to be the more accurate. Consequently the deviation 
d V between the two volume integrals is reported as a percentage of the right-hand 
integraI. For the models of figures 4 and 5 the respective values of dV are 0.23% 
and 0.29 yo. The accuracy and internal consistency of the model is thus considered to 
be satisfactory for small values of d/H,.  

Before leaving the Boussinesq limit, a fundamental difference between the anelastic 
and Boussinesq formulations should be remarked. This is the dependence of the 
anelastic solution on the temperature To of the upper surface. To appears in (A3)  
because the adiabatic gradient is proportional to the absolute temperature, not the 
temperature relative to the upper boundary. The comparison of Boussinesq and 
anelastic solutions presented above justifies McKenzie et aZ.'s (1974) use of the Bous- 
sinesq equations to study convection in the upper mantle. The anelastic solutions 
were computed with To = 273 OK. However since upper mantle convection occurs 
beneath rigid plates with basal temperatures of at  least 900 "C (McKenzie & Weiss 
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1975) a more reasonable value for To is 1173 OK. This would give a near surface adia- 
batic gradient which is larger than those used in the previous cases by a factor of 4.3. 
To evaluate the importance of this effect, the model shown in figure 4 was re-run with 
To = 1173 (figure 7). The close resemblance between the superadiabatic temperatures 
in figures 4 and 7 indicates that the validity of the Boussinesq approximation is not 
jeopardized by steep adiabatic gradients when d/H, < 1. 

4.2. Non-Boussinesq rmults: 0.25 < d / H .  6 1.50 

Three series of models were run over the range 6.5 x lo4 5 R,, 5 8.8 x lo7, one for 
each of the values of d / H ,  equal to 0.25 (series A ) ,  0.50 (series B) and 1.00 (series C). 
In  addition one model was run with d/H, = 1-50. For each series d/H, was held 
constant and R, was varied from model to model by increasing the heat flux F across 
the bottom boundary, The rate of internal heating E ,  was set equal to zero and the 
upper surface temperature To was 273 OK for all models. Most of the models were 
started by imposing a 1 "K horizontal temperature perturbation to a super-adiabatic 
temperature field such that a single convection roll resulted. Models at  the high R, 
end of each series were initialized with the final solutions of lower R, models. 

Model results. Parameter values for each of the models studied are listed in tables 
7 and 8. Each model was run until the time-averaged temperature and kinetic energy 
became approximately constant. 

Figure 8 illustrates the temporal development of three typical models. The kinetic 
energy E,, mean temperature T, efficiency E ( =  @ I F ) ,  and the ratio V, and mean 
magnitude V, of the left- and right-hand sides of (54) are plotted against time (in 
dimensionless units). In  figure 8 (a), model A3 evolves to a steady state. The convective 
motions become steady after five or six overturns, while the mean temperature adjusts 
on a longer time scale which is controlled by conductive heat transfer out of the central 
core. The efficiency E settles to a constant value of 0.223, about lower than 
predicted by (2). For this model, the ratio of the volume integrals of (54) has a constant 
value of 1.010 indicating a numerical discrepancy of l .Oo/, .  Model B7 (figure 8 b )  is 
an example of an oscillatory time-dependent solution (see also figure 12(c) below). 
The mean temperature fluctuations are superimposed on a slow thermal adjustment 
as the time-averaged mean temperature approaches a constant equilibrium value. 
The efficiency E also oscillates in response to the changing velocities, but has a con- 
stant time-averaged value of 0.434. Similarly, the value of V,, varies, typically from 
4.5 to 5.8 units. Values of V,, although oscillating, never exceed 1.008 and have a 
mean of 1.005. Thus the balance indicated by (54) is maintained to within O*8yo 
for this oscillating solution even though the derivation of (54) is valid only for steady- 
state flows. Model ClO (figure 8 c )  is an example ofa  strongly time-dependent solution 
which has reached a time-averaged steady state. The time dependence is caused by 
cold parcels of fluid breaking away from the upper boundary layer. The efficiency E 
has a time-averaged value of 0.823, with instantaneous values ranging between 0-5 
and 2.6. Though V,, shows considerable variations, fluctuations in V, are limited to 
the range 0.98 to 1.07 with an approximate mean value of 1-005. The nature of the 
time dependence is discussed in Q 4.2.2 below. 

4.2.1. Temperature and Entropy Projiles. Horizontally averaged temperature pro- 
files (figure 9) show that the approximately isothermal central regions of incompressible 
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Model 

A1 
A2 
A 3  
A4  
A5  
A6 
A7 
B1 
B2 
B3 
B 4  
B5 
B6 
B7 
B8 
B9 
310 
B11 
c1 
c 2  
c3 
c 4  
c5 
C6 
c 7  
C8 
c 9  
c 1 0  
Cl  1 
c12  
C13 
Bowl 
Bow2 
Born3 
D1 

Ro 
6.483 x lo4 
3.242 x lo5 
6.483 x 10' 
1.297 x loo 
2.593 x 10' 
5.187 x lo6 
7.780 x 10' 
2.802 x lo6 
4.121 x 10" 
4,945 x 10' 
6.593 x lo6 
9.889 x 10' 
1.648 x loo 
3.296 x 10' 
6.593 x 10' 
9.889 x lo8 
1.648 x lo' 
2.637 x lo7 
1-971 x 10' 
2.190 x loo 
2.737 x 106 
3.285 x loo 
3.832 x 10' 
5.475 x 106 
8.212 x 10' 

2.190 x lo7 
2.737 x lo7 
3.832 x lo7 
5.475 x 10' 
8.759 x lo7 
2.683 x 10' 
1.570 x lo6 

2.185 x lo8 

1.642 x 107 

2.683 x 105 

Bop? 
1.331 
6.657 

13.32 
26.63 
53.26 

106.5 
169.8 

1.070 
1.574 
1.889 
2.519 
3,778 
6.297 

12-59 
25-19 
37.78 
62.97 

100-8 
1.072 
1.189 
1.486 
1.784 
2.081 
2.973 
4.459 
8.918 

11.89 
14-86 
20.81 
29-73 
47-57 
27.9 

163.3 
- 

37-38 

N 

1.23 
3.60 
6.14 
6.87 
9.14 

11.06 
12.2 1 

1.03 
1.35 
1 a54 
1-01 
2.56 
3-53 
5.06 
7-13 
8.36 
9.82 

11.34 
1.01 
1-03 
1.17 
1.31 
1.45 
1.93 
2.50 
3-78 
4.55 
5.22 
6.28 
7.30 
8.25 
5-15 

10-28 
3.77 
7.37 

0.74 
1.85 
2.28 
2.20 
2.02 
2.56 

0.29 
1.22 
0.93 
1.50 
2.88 

- 

- 
- 
- 
- 
- 
- 

2.30 
6.27 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1.04 
1.89 
4.44 
- 

0.94 
0.98 
1.05 
1.07 
0.51 
0.52 
0.45 
1.89 
0.33 
0.85 
1.01 
0.86 
0.95 
0.65 
0.57 
0-66 
0.45 
0.07 
2-36 
1 a96 
1.57 
1.59 
1.37 
0.13 
0.80 
0.14 
0.91 
0.10 
1.74 
2.49 
0.18 
0.23 
0.29 
0.23 
1.81 

F ( =  @IF") 
0.049 
0.202 
0.228 
0.240 
0.242 
0.244 
0.247 
0.01 1 
0.128 
0.185 
0.263 
0.330 
0.382 
0.42 1 
0.441 
0.461 
0.473 
0.483 
0.02 
0.05 
0.15 
0.17 
0.27 
0.44 
0.56 
0-76 
0.80 
0-82 
0.87 
0.89 
0.90 
0.107 
0.113 
0.094 
1.30 

TABLE 7. Model characteristics. d /HT is 0.25, 0.50, 1.00, 1.50 and 0.117 for 
series A, B, C and D and the anelastic Bous models respectively 

models are replaced by approximately adiabatic central cores in the compressible 
models. The thin conductive thermal boundary layers at  the upper surface vary little, 
while those a t  the bottom become less pronounced as d /HT increases. This behaviour 
occurs because more heat is conducted down the steeper adiabatic gradient near the 
bottom where convection is (accordingly) less vigorous, an effect which becomes more 
important as d / H ,  increases. Indeed if d / H ,  is increased sufficiently, for a fixed 
bottom flux F, first the lower regions and then the entire layer are stabilized as the 
amount of heat which is capable of being conducted down the adiabatic gradient 
exceeds the actual heat flux F. For example, penetrative convection occurs for 
d/HT = 1.00 and R, between 2.0 x 106 and 4.5 x lo6, that is, between curves c1 and 
C6 on figure 9 (d). 

If  a parcel of descending (ascending) fluid is heated (cooled) adiabatically, its entropy 
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Model F’ T: AZ-1 

A1 105.11 273 24 
A2 525.53 273 24 
A3 1061*05 273 24 
A4 2 102.10 273 24 
A5 4 204-20 273 48 
A6 8 408-40 273 48 
A7 12 612.60 273 48 
B1 178.68 273 24 
B2 262.76 273 24 
B3 316.32 273 24 
B4 420-42 273 24 
B5 630.63 273 48 
B6 1051-06 273 48 
B7 2 102.10 273 48 
B8 4 204.20 273 48 
B9 6 306-30 273 48 
B10 10510*51 273 48 
B11 16816.81 273 48 
c1 378.38 273 48 
c 2  420-42 273 48 
c3 525.63 273 48 
c 4  630.63 273 48 
C6 735.74 273 48 
C6 1 061*06 273 48 
C7 1578.68 273 48 
C8 3 163.16 273 48 
c9 4204.20 273 48 
c10 5 255.26 273 48 
ci 1 7 357.35 273 48 
c12 10610.51 273 48 
C13 16816-81 273 48 
Bowl 1061.05 273 48 
Bow2 6 148.65 273 48 
Bow3 1061-05 1173 48 
D1 21 021-02 273 96 

TABLE 8. Valuds of dimensionless parameters. I? = 1.10 for all models. Values of (d/HT.K;) are: 
(a) series A, (0.25, 0.00204) ; (b) series B, (0.50, 0.00102) ; (c) series C, (1.00, 0.00051) ; (d )  model 
D1, (1.60, 0.00034); (e) anelastic Bow, models, (0.117, 0.00436) 

remains constant. Thus calculation of the horizontally averaged value of entropy as 
a function of depth can be used to determine the degree to which the central zone 
approximates a region of adiabatic heating and to better distinguish the gravitation- 
ally unstable boundary layers, notably the lower one. 

Considering the temperature and pressure to be two parameters of state, the entropy 
S may be expressed as S = S(T,  P ) ,  whence 

Making use of the thermodynamic definitions of C, and a, and Maxwell’s relations, 
(55) may be written 
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FIGURE 8. Temporal development of typical steady-state mid time-dependent numerical solu- 
tions. Kinetic energy E,, overall mean temperature p, efficiency E (=  CP/F',), the ratio V, of 
the two volume integrals in (54), and the mean magnitude of the same two volume integrals 
VM are plotted against dimensionless time. E,  and !i' are in dimensionless units, E and V, have 
no units and VM is plotted with arbitrary units. The small horizontal bar on the temperature 
graphs indicates the approximate time for one overturn. F,  V, and VM were only evaluated every 
50 time steps. This accounts for the clipped spikes in the plots of V, and V,. (a) Model A 3  
( d / &  = 0.25, R , / q  = 13.3) : solution obtained on a 24 x 24 finite-difference grid; approxi- 
mately 148 time steps per overturn. (a) Model B7 (d/HT = 0.50, R , / q =  12.6): solution ob- 
tained on a 48 x 48 finite-difference grid; approximately 400 time steps per overturn. (0 )  Model 
C10 (d/HT = 1.00, R , / q  = 14.9) : solution obtained on a 48 x 48 finite-difference grid; approxi- 
mately 493 time steps per overturn. 

dS C,dT a d P  
dz T dz p dz' 
-=----- 

With the assumption that dP/dz  = -pg, integration of (56) from z to z = d gives 

S(d)  - S(z) = C, In (T , /T)  + ag(d - z ) .  (57) 

Equation (57) expresses, in dimensional form, the difference in entropy between the 
upper surface and any point (2,~). For an adiabatic temperature distribution, T 
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0 so0 1000 1500 
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- 0.5 l'okkk 
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1000 1 so0 
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0 

FIGURE 9. Vert.ica1 profiles of horizontally averaged temperature. (a) Boussinesq solutions from 
NcKenzie et al. (1974). d 'HT 4 1 (incompressible). ( b )  Anelastic solutions with ~ / H T  = 0.25. 
( c )  Anelastic solut,ions with d / H T  = 0.50. (d) Anelastic solutions with ~ / H T  = 1.00. Labels on 
the anelastic profiles indicate the specific models. Temperature and height are in dimensionless 
units. 

would have the form T = To exp [ (d  - z) ag/C,] and the right-hand side of (57) would 
vanish for all z .  To express (57) in dimensionless form, a dimensionless entropy S' 
can be defined as S' = SIC, and, using the substitutions of Q 2.1, we have (suppressing 
primes) 

(58)  

where, as before, D = d /H,  and To is the temperature of the upper surface. 
Vertical profiles of the horizontally averaged value of A S  for several models of each 

series are displayed in figure 10. The similarity of these curves to temperature profiles 
of Boussinesq fluids (figure 9 a )  illustrates the parallel roles of entropy in compressible 
fluids and temperature in incompressible fluids. The central regions of the compressible 
models are isentropic, analogous to the isothermal region of Boussinesq fluids. This 
behaviour also occurs in compressible gases (Graham 1975). Interior zones of positive 
entropy gradient (corresponding to sub-adiabatic temperature gradients) analogous 
to the positive temperature gradients in Boussinesq fluids can also be seen on the 

A S  = S(Z) - S( 1) = In [(Ti-  To)/T'J - (1 - Z )  D ,  
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FIQURE 10. Vertical profiles of horizontally averaged entropy (measured relative to the value 
a t  the upper boundary). (a) Anelastic solutions with d/HT = 0.25. ( b )  Anelastic solutidns with 
d/HT = 0.50. (0 )  Anelastic solutions with d / &  = 1.00. The Rayleigh number increases from 
left to right in each set of profiles. Labels on the curves indicate the specific models. Entropy 
and height are in dimensionless units. The horizontal bars on profiles B1, C2 and C3 indicate 
the depth of convective overshooting into the stable region. 
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profiles of figure 10. The gravitationally unstable boundary layers are also clearly 
demarcated on figure 10. In  addition stable lower regions are evident in models B1, 
C1 and C3; these have no counterpart in the Boussinesq models. 

4.2.2. Two-dimensional fields. Figures 11 to 13 show contours of temperature, 
vorticity, stream function, entropy, rate of viscous dissipation and rate of working 
in adiabatic volume changes [see equation (54)l for several of the models from each 
series. 

(a) Series A ( d / H ,  = 0.25). Figures ll(a) and l l ( b )  show the steady-state solu- 
tions of models A1 and A3. Figures l l (c ,  d )  show two views of the time-dependent 
solution of model A7. For the range of Rayleigh numbers studied a single roll 
occupying the whole box persisted. However at the high Rayleigh number end of the 
series (R, 2 5 x 106)  the flow becomes time dependent. The time dependence takes the 
form of instabilities developing in the upper boundary layer and being swept into the 
downgoing plume. The resulting oscillations of mean kinetic energy and temperature 
are similar to those shown in figure 8 ( b ) .  

Details of the flow solutions are best revealed in the vorticity field which varies 
most markedly through figures 11 (a)  to 11 (d ) .  The vorticity is generated primarily 
by horizontal temperature gradients (see equation (51)] and is thus dominated by 
the plume structure. In  the classical Rayleigh-B6nard problem constant temperatures 
are applied across an incompressible fluid. The symmetry of the upper and lower 
boundary conditions results in a symmetric plume structure and, for large Rayleigh 
numbers, two local vorticity maxima of equal magnitude occur. If the constant- 
temperature bottom boundary condition is replaced by a constant-flux condition, 
the centre of the rising plume is hotter than in the Rayleigh-BBnard case and the 
vorticity has a maximum associated with the rising plume (figures 4, 5). 

The models in this study were all heated entirely from below, with the constant- 
flux bottom boundary condition. However, the vorticity fields shown in figures 11 (a) 
and 11 (b )  resemble those of incompressible liquids which are partially heated from 
within (McKenzie et al. 1974). The descending rather than ascending plumes dominate 
the flow and accordingly the vorticity is largest in the upper right. Since only the heat 
flux in excess of that which can be conducted down the adiabatic gradient is available 
to drive the convective motions, convection is least vigorous at the bottom. Moving 
upwards, the magnitude of the adiabatic gradient decreases and the energy driving 
the motion increases. Consequently the upper thermal boundary layers are more 
pronounced and produce the dominant plumes. This effect is most clearly seen in 
model A1 (see figures 9, 10, 11) for which the Rayleigh number R, is only greater 
than the critical value for the onset of convection, e, by a factor of 1-3. 

As the Rayleigh number is increased through models A3 and A7, the bottom 
boundary layer develops and the rising plume becomes stronger. In  model A7 the 
Rayleigh number is sufficiently large for the effect of the adiabatic gradients on the 
vorticity to be overcome by the rate of bottom heating. However the vertical extent 
of the zone of large vorticity next to the rising plume is considerably less than that 
of the corresponding zone next to the descending plume. A qualitatively similar 
feature was found in the partially internally heated Boussinesq models studied by 
McKenzie et a,?. (1974), arising from the geometry of the heat source disribution. In  
the present study, however, this feature is a direct consequence of the compressibility 
of the liquid. This may be seen by considering a cold parcel of compressible fluid, of 
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initial density po and typical dimension (Az) , ,  falling a distance 6 through an adia- 
batically stratified layer. If the temperature of the parcel is initially less than the 
environment by an amount (AT)o ,  then an order of magnitude estimate of the initial 
vorticity wo is p o ( A ! f ) , / ( A z ) ~  [obtained from (51)]. Ignoring conductive or frictional 
heat gain, the temperature difference at depth 6 is 

( A T ) ,  = (AT),exp (I - 6) D / r  > (AT), .  

Since conservation of mass in two dimensions requires pAxa to be constant, and 
< (Ax),, 6 4  > 0,. In  the reverse situation of a hot parcel of fluid with a dimen- 

sion and excess temperature of ( A z ) ~  and (AT)o,  rising a distance of 6, ( A T ) ,  < ( A T ) ,  
and (Ax), > ( A z ) ~  so that w8 < wo. Thus comparing two plumes of comparable positive 
and negative buoyancy, the cold plume becomes narrower and generates more 
vorticity as it falls while the hot plume becomes wider and generates less vorticity 
as it rises. Though undoubtedly too simple, this argument can explain the major 
qualitative features of plume behaviour. 

The combined effects of a more pronounced upper boundary layer and the narrowing 
of the downgoing plume produces vertical velocities which are larger in the descending 
plumes than in the rising plumes. Conservation of mass thus requires that the centre 
of circulation be shifted towards the cold plume (figure 11 c ) .  In  his numerical study 
of compressible gases, Graham (1975) also found higher velocities in the descending 
plumes and a shift of the centre of circulation towards the higher velocities. 

The role played by the upper boundary layer in the time dependence of model A 7  
is also indicated in the plots of vorticity in figures 11 (c ,  d ) .  The zone of large vorticity 
surrounding the descending plume remains essentially unchanged. The upper boun- 
dary layer instabilities develop as cold parcels of liquid which either fall through the 
layer, breaking up the convection rolls, or get swept across to the nearest downgoing 
plume. The latter behaviour occurs in model A?, causing pulses of high velocity in the 
descending plumes. 

An important feature of compressible convection in viscous fluids is the viscous 
dissipation of mechanical energy, which must play an important role in local energy 
balances. Contours of CD are shown in figure 11. Most of the shear heating is concen- 
trated into narrow zones near the vertical boundaries and in the corners where the 
liquid is forced to turn sharply. The more dominant descending plume produces 
more frictional heating a t  the lower right than does the rising plume a t  the upper left. 
The contours of 0 in figure 11 are similar to those computed by Hewitt et al. (1 975) 
for a Boussinesq liquid with d / H ,  = 0.117. The major difference is the asymmetry 
of diagonally opposite corners in figure 11 which is not apparent in Hewitt et al.'s 
incompressible results. However their results for models with partial internal heating 
look qualitatively similar to those presented here due to a similar asymmetry in the 
plume structure. The flow solutions of the series A models ( d / H ,  = 0.25) do not show 
any obvious influence of the viscous dissipation on their structure. 

In  steady state the global integral of CD must balance the global integral of the rate 
of work done against the adiabatic gradient. Equation (54) shows that the latter 
quantity is proportional to the integral of prCpTw. Contours of a dimensionless 
function, W, proportional to prC,Tw (figures 1la-d) show a relatively smooth dis- 
tribution in contrast to those of 0. 
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( b )  Series B ( d / H ,  = 0.50). Unlike series A ,  most of the models of series B have 
time-dependent solutions. Time dependence of the final solution occurs in models 
B 6 B l 1 ,  model B6 having B ratio of Rayleigh number to critioal Rayleigh number 
R o / R  equal to the relatively low value of 6.3. 

Figures 12(a )  and 12(b) show the steady-state solutions for models B1 and B 3 ,  
In model 231, convection is very weak (R,/Rz = 1.07, N = 1.03) and concentrated 
in the upper part of the layer. Weak counter-cells at the bottom, stable part of the 
layer, driven by viscous coupling to the major cells above, can be seen in the stream 
function contours of figure 12 (a).  Values of $ in the small counter-cells are about two 
orders of magnitude smaller than in the upper cells. Penetration of the downgoing 
plumes into the stable lower layer is indicated by the asymmetry of the larger cells 
seen in the stream function and vorticity contours. 

As the Rayleigh number is increased, the convecting region penetrates deeper into 
the layer. For model 8 3 ,  with R,/Rz = 1.9, the entire layer is convecting (figure 12b). 
However as revealed by the graph of relative contributions to the total heat flux in 
figure 14, convection in the lower region is still quite weak and nowhere in this model 
does convective exceed conductive heat transport. 

Models S l - B S  were all begun with a single convectian cell occupying the 
entire box. Models B l - B 4  rapidly broke up into two cells before settling down to a 
steady-state two-cell convection pattern. A similar tendency for single cells to break 
up into multiple cells was noted by McKenzie et al. (1974) in their internally heated 
Boussinesq models. At higher Rayleigh numbers, the flow is sufficiently vigorous 
to form battom boundary layers similar to the heated-from-below Boussinesq 
models, 

A si#gle time-dependent cell persisted in models B6-BS with behaviour similar to, 
but mbre pronounced than, that of model A7 discussed above. Instabilities of the 
upper boundary layer are swept into the downgoing plume causing pulses in the 
verCicsl velocities. As the Rayleigh number is increased the pulses become larger 
and more frequent. The time-dependent nature of the solutions of these models is 
clearly seen in figures 12 (c,  d )  which shows two views of model B7 at different times. 
At time t, an instability is being swept down the right-hand side of the box. A region 
of large vorticity is associated with the downgoing plume and, unlike the series A 
models, a small region of vorticity of opposite sign exists in the central region. The 
asymmetry of the plume structure, shown by the vorticity field, is more pronounced 
in the series B than in the series A models. Contours of 0 in figure 12(c)  show th& 
internal heating by friction is concentrated near the descending plume. As a result 
of this localized heating, a rise in isotherms adjacent to the descending plume persistu 
down to the bottom of the layer rather than dying out towards the bottom as would 
be expected. Consequently a small temperature gradient is generated across the cell 
of opposite sign to that caused by the plumes at the edges, hence the opposite sigh 
of the vorticity in the central region. 

At time t, ifi figure 12(d ) ,  the bulk of the cold instability has reached the bottom 
of the layer and vertical velocities in the plume &re less. Frictional heating in the 
bottom right-hand corner has generated a noticeable kink in the isotherms. This in 
turn results in a larger reversed vorticity in the central region and accounts for the 
ooncave shape of the stream function contours. Thus at d / H ,  = 0.50, viscous 
dissipation directly affects the flow patterns. For model B 7 ,  Ro/E = 12.6; this is 
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approximately the same value as that for model A3 (R,,/E = 13.3) in which no 
obvious effects of viscous dissipation were observed. 

Increasing the Rayleigh number through models B9-Bl1, instabilities developing 
in the upper boundary layer quickly break the original one cell into two smaller cells. 
These two-cell flows are also time dependent. The exact number of cells into which the 
original cell splits is strongly influenced by the side-wall boundaries of the model. 
The general trend for the upper boundary layer to become more unstable with in- 
creasing Rayleigh number and increasing value of d /H,  is however believed to be 
qualitatively correct. 

Figure 12 ( e )  shows a typical view of the solutions for model Bll ,  for which 

R o l e  = 100. 

Convection is vigorous with a substantial bottom boundary layer and central rising 
plume. As a cold instability descends the downgoing plume at the left and spreads 
out a t  the bottom, the base of the other cell is squeezed to the right. Unequal-sized 
cells result. Viscous heating is significant in such vigorous convection; the regions 
of reversed vorticity in the centres of the cells, and the concave sides of the convection 
cells themselves, again result from the localized heating adjacent to the descending 
plumes. The effects of viscous dissipation are also registered on the entropy contours 
as regions of increased entropy adjacent to the downgoing plumes. 

(c )  Series C (d /H,  = 1.00). The series c! models all have time-dependent solutions 
with the exception of models C1 and C2, which convect marginally with values of 
RO/E = 1.1 and 1.2 and N = 1-01 and 1.03 respectively. Models C 1 4 8  were all 
begun with an initial roll occupying the whole box which quickly broke up into 
smaller rolls. Models C9-Cl3 were each begun with the final solutions of the previous 
model in the series. 

Figure 13(a) shows the steady-state solution of model C1. As in model B1, the 
variation of the adiabatic gradient across the layer stabilizes the lower regions. The 
effect is more pronounced in model C1 however, and convection is restricted to the 
upper half of the layer. The entropy contours indicate the region of buoyant convection 
as an isentropic layer overlying a gravitationally stable zone. The zero contours of 
II. reveal three pairs of counter-cells (of decreasing strength with depth) driven by 
viscous coupling to the upper convection cells. The descending limbs of the upper 
convection cells penetrate into the stable region and distort the first pair of counter- 
cells. This can be seen most clearly in the contours of o. The first pair of counter-cells, 
however, do not distort the lower cells in the same manner. Figure 14 shows that 
convective heat transport is negligible in the lower half of the layer in this model, and 
contributes less than 25 yo to the total heat flux in the upper half. 

A preferred roll aspect ratio of approximately unity may account for two rolls 
having developed in the upper region. The variation of adiabatic gradient across the 
unstable layer acting as an internal heat source may also tend to reduce the aspect 
ratio. This effect however appears to be more important in models C5 and CS, in which 
convection extends to the bottom of the layer. 

As the Rayleigh number is increased, the main convection cells penetrate deeper 
into the stable bottom layer and the flow becomes time dependent a t  relatively low 
Rayleigh numbers. Figure 13(b) shows a typical view of the solutions for model C4. 
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Although the streamlines almost reach the bottom of the box, convection is very 
weak a t  the deepest points (figure 14) and nowhere contributes more than 33% to 
the total heat flux. I n  such weakly Convecting systems, the effect of convection on 
the temperature field is best revealed by the contours of entropy. The central descend- 
ing plume and upper boundary layer can be seen in the entropy contours of figure 
13(b). An adiabatic region on either side of the plume and a gravitationally stable 
lower layer are also indicated. At the upper right a boundary-layer instability is 
forming. This will eventually fall through the fluid generating an additional, but 
transient, roll, The absence of any rising plume is apparent in the contours of both 
w and S. 

Early in the development of models CS and C6 instabilities of the upper boundary 
layer break the flow pattern into four time-dependent rolls which persist from then 
on, the relative sizes and positions shifting with time. Figure 13 (c) shows the solutions 
of model C6 at one time. Convection extends throughout the layer in this model and 
in the upper half of the layer transports more heat than conduction. In the lower 
regions conduction is still the dominant heat transfer mechanism (figure 14). 

As the Rayleigh number is increased, convection becomes more vigorous and 
gravitationally unstable boundary layers develop a t  the bottom of the layer. The 
variation of adiabatic gradients across the layer becomes less important and the 
model solutions look less like those of internally heated models, As in series B, once 
the Rayleigh number is sufficiently high for vigorous convection to occur throughout 
the layer, fewer rolls occupy the box than in the weakly convecting models. Models 
C7-Cl3 all have two main rolls occupying the box. However cold parcels of liquid 
intermittently breaking away from the unstable upper boundary layer and falling 
through the convection cells create temporary but complex flow patterns consisting 
of three or four smaller rolls. The frequency of these disruptions increases with Rayleigh 
number. 

Figures 13 (d, e )  show solutions for model C10, for which Ro/@ = 15, a t  two different 
times. At time t,  two rolls occupy the box. The extremely concave side of the left-hand 
roll is a result of intense frictional heating adjacent to the descending plume. The 
temperature contours show a marked local rise in temperature next to the descending 
plumes which is most intense at the left. This generates vorticity of the opposite sense 
to the main circulation of the left-hand cell. Concave streamlines result. The same, 
though less intense, effect occurs in the right-hand cell. At time t,, in figure 13 (e), an 
instability has developed in the unstable boundary layer. This recurrent formation 
of cold ‘ thermals’ resembles Howard’s (1966) description of time-dependent con- 
vection. 

Figure 13(f) shows one view of the time-dependent solution for model C13. This 
model has a value of R,/P, = 48, the largest in series C, and is a t  the limits of resolution 
of the numerical scheme on a 48 x 48 finite-difference grid. Qualitatively the solution 
is quite similar to those shown in figures 13(d, e )  for model ClO. The flow is more 
vigorous and the upper boundary more unstable. 

( d )  Series A-C: summary. The most striking result of increasing the compressibility 
factor d / H ,  through series A to C is the development of time-dependent flow a t  
relatively low Rayleigh numbers. Schluter, Lortz & Busse (1965) first showed that 
two-dimensional rolls were the only stable stationary solutions of the Boussinesq 
equations of motion at Rayleigh numbers close to the critical value. For rigid 
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boundaries Busse (1967, 1971) and Clever & Busse (1974) determined the region of 
stability of two-dimensional rolls in the Rayleigh number, wavenumber plane, and 
gave theoretical descriptions of the instabilities defining the boundaries. These 
authors considered perturbations of the form ei(dm+bu), where d and b are horizontal 
wavenumbers, applied to rolls aligned in the y direction. For given values of 
Rayleigh number, k and b, Busse (1967) found that rolls were most unstable to dis- 
turbances for which d = 0. This is of particular relevance to our two-dimensional 
numerical model since only disturbances with b = 0 and d + 0 are possible. At high 
Prandtl numbers, the stability boundary defined by this, the Ekhaus type of in- 
stability, lies outside those for the three-dimensional zig-zag instability (at low 
wavenumbers) and cross-roll instability (at high wavenumbers) (Busse 197 1 ; Clever & 
Busse 1974). Consequently our numerical solutions are artificially stabilized with 
respect to the latter two types of disturbances. Furthermore the horizontal periodicity 
of the mathematical model eliminates all Eckhaus disturbances with k c n/h, where 
h is the dimensionless width of the box. 

Straus (1972) and Skilbeck (1976) found that the region of stability (of two- 
dimensional rolls) is extended to higher Rayleigh numbers when free boundaries are 
assumed. The simplifications of the numerical model thus all tend to stabilize the 
flow. Nevertheless time-dependent solutions occiir for values of R , / R  as low as 1.5 
in series C (d/HT = 1.00) and 6.3 in series B (d/H,  = 0.60). The series A models 
(d/HT = 0.25) behave more like incompressible solutions with steady flows persisting 
up to R o / R  = 107. It may be concluded that for each series of numerical solutions, 
the Rayleigh number a t  which time-dependent flow first occurs is probably an upper 
bound to the range of Rayleigh numbers for steady flow, and that the region of 
stability in the Rayleigh number, wavenumber plane diminishes with increasing d/H,. 

The fact that all the vigorously convecting models of series B and C have time- 
dependent solutions illustrates the importance of retaining the time-dependent terms 
in the equations. Although steady-state solutions obtained after discarding all partial 
time-derivatives will satisfy the governing equations (Turcotte et al. 1974), SO will 
a purely conductive solution. A somewhat surprising result obtained from the series 
B and C solutions is the close balance of the overall rates of viscous dissipation and 
work done in adiabatic volume changes at all times during non-steady flows. In the 
anelastic-liquid approximation the non-hydrostatic pressure PI is ignored in the 
thermal energy equation. Thus integrating ( 5 )  (with no internal heat generation) 
over the volume V of the convecting region gives 

where the operator D/Dt = (a/% + u . V )  is the total derivative following the motion, 
S is the surface bounding V ,  n is an outward pointing unit vector normal to S and Q 
represents the volume integral of 7tj au,/ax,. Applying Reynolds’ transport theorem 
to the left-hand side and expanding the last term on the right of (59) we have 

d 
pC,TdV = K V T . n d S + @ - - F a ,  

HT 
where Fa = A(pt.C,,Tw) is the overall average of the vertically convected heat flux 
(the overbar representing a vertical average). Under steady-state conditions the left- 
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hand side of (60) and the first term on the right both vanish; equation (54) results. The 
first term on the right vanishes because, in the absence of internal heat sources, an 
equal flux is conducted out of the top boundary as is conducted in through the bottom. 
In the time-dependent models, however, a constant heat flux is maintained a t  the 
bottom boundary (as a boundary condition) while the heat conducted through the 
upper boundary layer changes with time as instabilities develop within the layer. 
Consequently the left-hand side and first term on the right of (50) are both non-zero 
in the time-dependent case. Nevertheless the numerical resuIts of the time-dependent 
models indicate that (54) continues to hold true regardless of the nature of the flow 
(see table 7). The mean magnitude of the last two terms of (59), V,, and their ratio, 
V,, are plotted against time in figure 8 for typical time-dependent models. Although 
the magnitude of these terms may vary widely with time, their ratio remains very 
nearly unity. 

For steady-state models, the percentage deviation of the two volume integrals of 
(54)) d V ,  was used as a measure of the internal consistency of the numerical scheme. 
The constancy of energy flux through the layer was another internal check. The latter 
indicator is lost in the time-dependent models since a t  any time the heat flux may 
vary significantly with depth. However since (54) remains approximately valid for 
the time-dependent solutions, dV continues to be a useful monitor of the numerical 
scheme. Values of d V are tabulated for all models in table 7 along with dF for the 
steady-state models. 

Another distinctive feature of the above results is the effect of variation of adiabatic 
gradients across the layer on models with relatively low values of R,/R;. Figure 14 
shows plots of the conductive and convective contributions to the total energy flux 
F' through the convecting regions for each of the three series. In the series A models 
(figure 14a), with d/HT = 0.25, there is no visible effect of the adiabatic variation 
on the strength of convection in the lower regions. In  figure 14(b) for series B, the 
marginally convecting model B1 is seen to be convecting only in the upper regions. 
At a slightly higher Rayleigh number, model B3 is convecting (weakly) throughout 
the layer with a convective flux which decreases with depth. A similar but more 
extreme reduction of convective flux with depth is shown in figure l4(c) for the low 
Rayleigh number models of series C. 

Also included in the plots of figure 14 is the contribution by viscous stresses to the 
total vertical energy flux [see (52)]. The magnitude of this source of energy flux never 
exceeds 2.5 yo for any of the models studied and it would therefore provide a relatively 
unimportant means of energy transport. 

The importance of viscous heating however clearly increases with d/HT. In  the 
series A models, shear heating is insignificant, whereas, in the vigorously convecting 
models of series C ,  local heating near descending plumes is of sufficient intensity to 
modify both temperature and flow solutions. This is particularly true when an in- 
stability of the upper boundary layer is swept downwards with the flow. The amount 
of viscous dissipation thus changes with time and contributes to the complexity of 
the time-dependent flow solutions of the compressible models. 

A quantitative measure of the importance of viscous dissipation is given by (2), 
which for the present study takes the form 

(61) E = @IFu = (d /HT) .  
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FIGURIC 14. Relative contributions to vertical energy flux due to oonvection (. . .), conduotion 
(-), end visoous stresses (-*-). The scale for convection and conduction ranges from 0 to 100 yo 
and is indicated at the bottom of eaoh plot. The contribution due to viscous stresses is plotted 
on an expended scale ranging from - 6.0 yo to + 6.0 Ol0 and is displaced to the right such that 
0.0 yo ie centred on emh plot. The soale for this contribution is indicated at the top of each graph. 
(a) Series A (d/& = 0.25). ( b )  Series B (d/& = 0.50). (c)  Series C (d/& = 1.00). R, increases 
from left to right in each aeries of graphs. 
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Hewitt et al. (1975) proposed this equation for vigorously convecting systems in 
which most of the heat is carried by convection. The anelastic computations presented 
above enable a check on the validity of (61) for d / &  < 1.50. For every model the 
ratio of the global viscous dissipation rate, CD, to the heat flux out of the upper surface, 
F,, was computed at each time step. Rurming averages of @IFu were also computed. 
For the steady-state models, @IFu remains constant and F, is the same as the heat 
F entering the bottom of the box. In the time-dependent models, the time average 
of @IFu remains constant when averaged over times long compared to typical periods 
of oscillation. In  figure 15, values of E are plotted against Rayleigh number for all 
the models of each series, except for those convecting marginally, in which CD = 0. 
Model D1, with d /HT = 1.50, and the two anelastic models run in the incompressible 
limit of d/HT = 0.1 17 are also included in figure 15. Of particular interest is the value 
of E = 1-30 plotted for model D1; this model provides the first known physical 
example of a convecting system in which E > 1.00. This graph provides strong 
evidence that (61) is valid for d / H ,  < 1-50. The value of d /HT appears to be an upper 
limit which is approached asymptotically by the vigorously convecting systems. 
Values of E for the low Rayleigh number models fall well below the upper limit 
because a significant proportion of the total heat flux is conducted along the adiabatic 
gradients, violating the condition that convection carries the total heat flux across 
the layer. The verification of (61) by figure 15 confirms that the arguments proposed 
by Hewitt et al. (1975) continue to hold when d = O(HT) .  

The model solutions presented above depend on the five dimensionless parameters 
D, tc0, F,  I? and To [see (41)-(A4) in table 1 and (32)]. D is the compressibility factor 
d/H,,  tc0 is the dimensionless thermal diffusivity, F the dimensionless heat flux pre- 
scribed at the bottom boundary, I’ Gruneisen’s parameter and To the dimensionless 
temperature of the upper surface. Each model is characterized by its set of five para- 
meters, the values of which are listed in table 8. I’ and To have constant values through- 
out series A ,  B and C .  The remaining three dimensionless parameters, which vary 
from model to model, are defined as 

D = dgtL/Cp, (02) 

4J = VOKO/(B~Tld% (63) 

and P’ = Fd/(p,Q.KoT,), (64) 

where we have here reverted to the notation of primed variables for dimensionleas 
quantities and unprimed variables for dimensional quantities. 

The model results can be scaled to dimensional values for particular cases by deter- 
mining the appropriate values of D, K; and F’ from the relevant geophysical parameters. 
Since the temperature scaling factor Tl = 1 OK, and Ti = 273 in every case, model 
temperatures scale directly (by a factor of 1.0) from numerical values to degrees 
Celsius. The mean temperature of the convecting region is therefore independent 
of the (dimensional) thermodynamic and geometric variables. (This of course requires 
that, for a given value of F’, F varies as d-1.) 

Although the numerical model is too simple to  model convection in the Earth’s 
mantle accurately, an interesting example to consider is small-scale convection in 
the upper 700 km. This enables a direct comparison with the incompressible results 
of McKenzie et al. (1974). In  (62)-(64) TI, po and v,, are constants, po and vo being 
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FIUWRE 16. Efficienoy E (= Q/FJ as a function of R,fR:. Each solid oircle represents the 
value of E oomputed from one model. The lines labelled A ,  B and C connect points from models 
with the same values of d / H p ;  the letters indicate the series to which the models belong. Points 
for the two anelaatic models Bousl and B w 2  (8 4.1) are also included. The horizontal lines 
labelled with values of E indicate the theoretically predicted limit for each series at high values 
of R,/%. Curve A includes models Al-A7, ourve B models B2-Bll, and curve C models C5- 
C13. 

surface values; in the Earth's mantle g and C, can also be assumed constant (Birch 
1952). The four remaining physical variables are d, a, K~ and P. For the upper mantle 
problem d = 700 km. The specification of a therefore determines the compressibility 
factor D (by 62). Unfortunately, there is considerable uncertainty in choosing an 
appropriate value of a. Turcotte & Oxburgh (1972) give a table of estimates of a 
which range from 4.7 x 10-5 "(7-1 at the surface to 0.9 x 10-5 "C-1 a t  a depth of 2600 km. 
These authors use a value of 3.5 x 10-5 O C - l  in their upper mantle calculations. 
Peltier (1972) takes a = 4 x 10-5 "C-l, corresponding to pure olivine a t  high tem- 
perature. McKenzie et al. (1974) use a = 2 x 10-5 OC-l, the value for the /?-spinel 
phase of olivine a t  room temperature and pressure, but remark that, at  depths where 
the olivine and spinel phases are in equilibrium, the effective value of a is about 
3 x 'C-l, or an order of magnitude larger than the above values. Finally, Hewitt 
et al. (1975) note that if the upper mantle is everywhere an equilibrium assemblage, 
as Griggs (1972) has suggested for sinking slabs, then a representative value of a for 
the upper mantle is 4 x "C-1. This uncertainty in a results in a corresponding 
uncertainty in D (although as discussed in Q 1 an estimate of D may be obtained 
from the density increase across the mantle). For the purposes of the following dis- 
cussion we will therefore consider D to be a free parameter. 
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C, = 1.2 x 1CP J kg-1 ‘C-1 g = 10me-s 
vo = 2 x 1017 ms 8-1 
po = 3 . 7 ~  1CP kgm-* 
d = 7.0 x 10’ km 

TABLE 9. Physioal and thermodynamio variables 

K,, = 1 . 6 ~  10dmss-l 
Tl = 1 OK 

The value of K ~ ,  like a, is a function of temperature and pressure. However following 
McKenzie et al., since K~ increases with pressure, we take K~ = 1.5 x 10“ m2 s-l, an 
estimated value for the p-spinel phase. The values of K; listed in table 8 were chosen to 
be consistent with a constant value of K~ for all models. In  the present example of 
upper mantle convection in which d is also taken to be the same in every model, the 
change in K; from series to series arises from the change in a. 

Using the values of thermodynamic variables given in table 9 and the dimension- 
less parameters of table 8, the mean temperature and (dimensional) flux F were 
determined for each model. These values are plotted in figure 16 on a graph of !i’ 
versus F .  Since is a function of both F and D, each series is represented by a separate 
p-F curve. The bottom curve, labelled ‘incompressible’, is the curve for Boussinesq 
fluids taken from McKenzie et al. (1974). The top line, labelled ‘conduction’, is the 
locus of mean temperature that would occur in the absence of convection. With the 
model’s constant-flux bottom boundary condition, convection has the effect of 
reducing the mean temperature of the box. For a given flux, the Boussinesq model 
convects most vigorously and hence has the lowest mean temperature, since it does 
not experience the retarding effect of adiabatic gradients. The ‘conduction’ and 
‘incompressible’ curves on figure 16 thus define the range of all other curves. 

The most obvious feature of figure 16 is the increasing effect of adiabatic gradients 
in retarding the flow as d/HT increases. For a given value of F ,  the mean temperature 
moves closer to the conduction curve as d/HT increases from series A to C. Since 
temperature is plotted on a logarithmic scale in figure 16, the Nusselt number may be 
represented by N = loA, where A is proportional to the vertical distance between a 
F- F curve and the conduction curve. The reduced vigour of the flow as d/HT in- 
creases thus corresponds to a reduced Nusselt number. The shaded area on figure 16 
indicates regions of time-dependent flow. The high-flux ends of the curves are all time 
dependent and, since time dependence begins at lower values of F aSd/HT increases, in- 
creasing d/HT for a fixed flux F also results in increased time dependence of the flow. 

These observations are relevant to the geophysical problem since the surface heat 
flux has a fixed and relatively well-defined value, whereas the appropriate value of 
d / H T  is uncertain. The vertical dashed line in figure 16 indicates the mean heat flux 
a t  the surface of the Earth (5.85 x 10-2 W m-2). The Boussinesq and series A models 
at  this value of F both have steady-state solutions, whereas the series B and C are 
time dependent. This example shows that if d = O(HT) the details of upper mantle 
convection are qualitatively different from those of Boussinesq fluids. 

Other interesting features of figure 16 occur at both low and high values of F .  A 
lower bound on the value of F for which convection can occur is the amount of heat 
conducted down the adiabatic gradient at the upper surface, KTo/HT. For a fixed 
value of d ,  as dlHT increases, HT decreases and the lower bound increases. Accordingly 
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FIGURE 16. Mean temperature aa a function of the heat flux which is supplied as a bottom 
boundary condition. The line labelled ‘conduction’ indicates the temperatures which would 
occur in the absence of convection. The line labelled ‘incompressible’ is taken from the Bous- 
sinesq results of McKenzie et al. (1974). The large solid circles on the conduction line indicate 
the oritical points for the onset of convection. The small solid circles indicate the mean tem- 
perature and bottom heat flux for each model. Points from models with the same value of d/& 
are connected with lines labelled with the appropriate values of d / H p  All models from eaoh 
series are included. 

the curves for larger d/HT join the conduction line at  higher values of 3’. Values of 
the critical flux F, for the onset of convection, obtained from the linear marginal 
stability analysis of $3, show good agreement with the nonlinear model results at  
low F. A small zone of reversed curvature is apparent at the lowest values of F in 
the curves of both series B and C .  This occurs in the region of penetrative convection 
solutions. 

At high heat flux the curves all tend to parallel the incompressible curve. The flow 
is sufficiently vigorous for most of the heat to be transported by convection (see 
figures 14, 15). The boundary-layer arguments of McKenzie et al. (1974) will therefore 
apply and the same power-law dependence results. The fact that the curves do not 
all overlie each other at  high F is due to the adiabatically stratified central region 
which exists regardless of the vigour of the flow. For a fixed value of F ,  this effect 
raises the mean temperature of the box and reduces the Nusselt number, as d /HT 
increases. The percentage reduction from series to series however becomes less as F 
increases and in the limit of very large F would be negligible. 
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FIGURE 17. Graphs of Nusselt number N ,  versus R o / q ,  for the three series of models. The 
symbols identify the series from which each point originates: + , series A ; x , series B ;  
0 ,  series C ;  and 0, model D1. The straight line has a slope of 0.26 and indicates the 
power-law behaviour to be expected if N a ( R o / q ) i .  

The Nusselt number N ,  plotted against R o l e  for the three series of models, follows 
similar curves (see figure 17). The point for model D1 (with d/H,  = 1.50) falls on the 
same curve. The straight line in figure 17 has a slope of 0.25 and indicates the power- 
law dependence of N on R o / R  predicted by the boundary-layer arguments of McKenzie 
et al. (1974). The approach to the predicted power-law behaviour at high values of 
R o / R  is again apparent. 

4.3. Influence of initial conditions and spatial resolution 

The final form of most of the flow solutions presented above are strongly dependent on 
the initial fields from which they have evolved. The restriction to two dimensions 
and the fixed lateral extent of the model solutions make it difficult for one regular 
flow pattern to evolve into another with a different number of rolls. In  series B, for 
example, either one-, two- or three-roll steady solutions can be obtained for models 
B2-B6. At higher Rayleigh numbers in this series (i.e. models B7-Bll) both single- 
and multiple-roll solutions become time dependent. Figure 18 shows fluctuations of 
the mean kinetic energy for both one- and two-roll solutions of model B9. Although 
the upper boundary layers are equally unstable for single- or multiple-roll solutions, 
the greater separation of descending plumes in the single-roll case allows the insta- 
bilities more time to develop. This results in larger pulses of kinetic energy in the 
single-roll solution as seen in figure 18. In the two-roll solution, smaller parcels of cold 
liquid breaking away from the upper surface more frequently result in smaller fluc- 
tuations. 

The solutions of rnarginaZZy convecting models appear to be independent of the 
initial conditions. For model B1 ( R o l e  = 1.1)  a two-roll-wide pattern evolves regard- 
less of whether the initial flow field is one, two or three rolls wide and regardless of the 
initial mean temperature. This solution is evidently influenced by both the linear 
stability and the fixed lateral extent of the box. 
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FIGURE 18. A comparison of kinetic energy fluctuations for one-roll and two-roll solutions for 
model B9 ( d / &  = 0.50; R o l e  = 37.8). Kinetic energy E,  and time t are in dimensionless 
units. The curve with the large amplitude fluctuations in El, is from the one-roll solution. The 
more gently fluctuating curve is from the two-roll solution. The upper and lower time scales 
refer to the one-roll and two-roll solutions respectively. 

Because of t,he non-uniqueness of the nonlinear solutions, the preferred horizontal 
scale cannot be determined from the models. However general features such as the 
increased time dependence as both R, and d/HT increase, and the decrease in hori- 
zontal wavelength of the rolls as d /HT increases, appear to be independent of the 
initial conditions. 

The spatial resolution of the finite-difference mesh also affects the nature of the 
final solution. In  figure 19, kinetic energy is plotted against time for model B5 when 
solved on both coarse (24 x 24) and fine (48 x 48) finite-difference grids. On the coarse 
grid an apparently regular oscillatory solution is obtained. The amplitude of oscilla- 
tion, however, is gradually diminishing with time. After 31 6 dimensionless time 
units the coarse grid solution was interpolated onto the fine grid and then allowed 
to evolve as shown in figure 19(b) .  The oscillations die out after a few overturns and 
a steady one-roll solution evolves. The mean kinetic energy of the oscillatory solution 
is approximately equal to that of the final steady solution. This difference in be- 
haviour is due to the poorer representation on the coarse grid of short wavelength 
instabilities developing in the upper boundary layer. Accordingly, the fine grid was 
used for all models which displayed time-dependent behaviour on the coarse grid, 
as well as for all models in which fewer than three grid points on the coarse mesh 
spanned the upper boundary layers (Moore & Weiss 1973). 

Although the 48 x 48 grid is the finest mesh used in most of the models studied, 
we believe the time dependence obtained a t  high values of R, and d/HT to be a feature 
of the physics of compressible flow and not simply a numerical manifestation due to 
limited spatial resolution. The temporal development of model C10, for example 
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FIGURE 19. A comparison of kinetic energy fluctuations of a single-roll solution for model B6 
( ~ / H T  = 0.50; R , / q  = 3.78) when (a) obtained on a (coarse) 24 x 24 finite-difference grid, 
and ( b )  obtained on a (fine) 48 x 48 grid. The horizontal bar indicates one overturn time. 

(figure 8c), shows no sign of decaying amplitudes of oscillation as was noted above 
for model B5 on the coarse grid. Also, model D1, run on a grid with 96 vertical grid 
points, exhibits the same form of time dependence. Furthermore, the low-Rayleigh- 
number models of series C (i.e. (73-126) which exhibit time-dependent behaviour are 
convecting very weakly (figure 14) and hence are well resolved on the 48 x 48 grid. 
The point of transition from steady to non-steady solutions may be affected by 
limited resolution but this effect is thought to be small compared to that of the im- 
posed two-dimensionality and side-wall boundaries. 

5. Geophysical implications and conclusions 
A major drawback of upper mantle convection as a driving mechanism for plate 

tectonics is the limited scale of plate motion that could be achieved with the preferred 
aspect ratio of approximately unity (Richter 1973; McKenzie et al. 1974). One might 
think that this problem could be overcome by assuming that convection extends 
down to the core-mantle boundary; an aspect ratio of one would then allow coherent 
surface motions over distances of approximately three thousand kilometres. However, 
both linear and nonlinear analyses above indicate that the aspect ratio of two- 
dimensional rolls is reduced as the depth of the convection zone is increased. Hence 
the assumption of mantle-wide convection does not appear to resolve the problem of 
scale. 
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Cold plumes descending from gravitationally unstable upper boundary layers 
dominate the flow solutions. Internal heating in the mantle would accentuate this 
effect. At high Rayleigh numbers lower boundary layers and rising plumes also occur. 
However the geometrical effect of decreasing density with height causes rising plumes 
to expand and dissipate their buoyancy. Thus narrow plumes rising to the surface 
are not a feature of compressible flow. They appear to be restricted to shallow layers 
which are a t  least partially heated from below (McKenzie et al. 1974). This suggests 
that if thermal plumes are responsible for oceanic hot-spots such as the Hawaii- 
Emperor sea-mount chain, then these plumes cannot have originated a t  great depths 
(e.g. the core- mantle boundary), but rather are generated in the upper mantle. 

In the model solutions, viscous dissipation is concentrated in narrow vertical zones 
adjacent to sinking sheets of cold material. There is no evidence of horizontal planes 
of dissipation as suggested by the one-dimensional shear flow models of Froidevaux & 
Schubert ( 1975). Localized kinks in the isotherms, and consequently odd-shaped 
convection rolls, appear to be the prime effect of viscous dissipation in deep layers. 
The contribution of horizontally averaged viscous stresses to the total energy flux 
across the layer [equation (52)] is insignificant for d /HT < 1.0 (figure 14). Consequently 
the principle (valid for Boussinesq fluids) that the total energy flux at  any depth is 
the sum of conducted plus convected heat flux a t  that depth, remains approximately 
true for deep layers with d/H,,  < 1.0. In  particular this will be true for the Earth’s 
mantle and hence details of viscous stress fields can be neglected when constructing 
thermal models of the Earth. 

The influence of density stratification is primarily geometric for the range of 
values of d /HT studied. The contraction of descending plumes causes shear heating 
along the plumes to increase with depth. However since the thermal capacity per 
unit volume of the fluid also increases with depth, there is no strong depth dependence 
of the effects of viscous heating on temperature (see figure 13d for example). The 
linear analysis of Q 3 indicates that density stratification does not have a significant 
stabilizing influence when d / R T  < 1.0. At d / H T  = 3-0, however, the density variation 
introduces a high degree of stability (table 6).  This result indicates that, although 
relevant to the Earth’s mantle (for which d / H ,  < 1.0), the conclusions of this study 
may not be valid for layers for which d / H ,  % 1.0. 

The linear results suggest that there is a new regime 6f flow at  values of d /HT > 1.0. 
The flow solutions of model D1 at d / H ,  = 1.50 also support this suggestion. Figure 
20 shows a typical view of the time-dependent solution for this model. Unlike any 
of the series A to C models, several rolls occur stacked one upon the other. Cold 
parcels of fluid breaking away from the upper boundary layer fall alternately down 
the left- and right-hand edges of the box, generating rolls with opposite sense of 
rotation. The cold liquid descends in individual parcels rather than forming continuous 
plumes, and the entire flow pattern moves downwards with the cold parcels. Model 
D1 was run primarily to establish the fact that E as given by (61) can be greater 
than one. The solution was obtained in a narrow (24 x 96) box in order to minimize 
computer time. The side walls are very restrictive in this case and it is not clear whether 
the unique features of this solution would occur in wider boxes. A detailed study of 
convection in deep layers with d /HT > 1-00 would be an interesting subject for future 
research. 

Of the non-Boussinesq features included in the present model, the variation of the 
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adiabatic gradient has the dominant effect on the character of the flow. Viscous dissi- 
pation and density stratification appear to affect only details of the two-dimensional 
flow structure, while the decrease in magnitude of the adiabatic gradient with height 
acts as an internal source of buoyancy. 

This study has shown time dependence to be a common feature of convection in 
deep layers. The balance between dissipated heat and work done against the adiabatic 
gradient is nevertheless preserved. A consequence of this balance is that at high 
values of the ratio Ro/RO, the compressible flow obeys the same power laws as incom- 
pressible flow. Finally the theoretical prediction of (2) is verified by these numerical 
experiments for d = O(H,). 
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Appendix A. Numerical solutions of linear equations 
A modified version of the numerical scheme developed by Skilbeck (1976) to 

investigate the stability of steady basic states was used. The sixth-order set of linear 
equations [equations (43)-(45)] is replaced by a set of six simultaneous first-order 
ordinary differential equations. Defining a 6-component vector f as 

f(z) = cm), C(4, W Z ) ,  X ( z )  y(z),z(z)lT, 

where X = d,0, Y = d, U and Z = d, Y, we can write 

d,f = Af, 

where A is a coefficient matrix given by 

A =  

* o  0 0 1 0  
0 0 0 0 1  

0 - ik D l r  0 0  

(pa/., + ka)  0 P@{ -A  + D[To -I- (1 - 4 POI> 0 0 
0 0 0 0 0  

. ikp 2k2D/I' ik(#(D/I')'- k2 )  0 2k2 

A 6 x 6 propagator matrix for (66), P(z; zo), must satisfy 

d,P = AP 

and P(z0;zo) = I,, 

where zo is the z co-ordinate of one boundary and I, is the 6 x 6 identity matrix. Given 
matrix A and the appropriate boundary conditions, (68) is solved for P(z; zo), from 
which f(z) is determined as 

f(2) = P(2; zo) f(zo). (70) 
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= 0. (72) 

Appendix B. Numerical solution of the non-linear equations 
Equation ( A l )  shows that vorticity is generated by horizontal gradients of tem- 

perature and [recalling (28)] pressure, the importance of the pressure gradient in- 
creasing with D. Since calculation of the horizontal pressure gradients requires a 
prior knowledge of the velocity field, ( A l )  and (A2) are solved in an iterative manner. 
A first estimate of w is obtained from a truncated version of (Al),  

v20 = p,a~/ax.  

Using (Al)’ and (A2) an approximate solution of $ (and hence of u) is obtained from 
which a first estimate of the pressure gradients is computed. This estimate is sub- 
stituted into the right-hand side of ( A l )  and new values of w ,  $ and u computed. 
This iterative cycle continues until the r.m.s. (root-mean-square) value of two suc- 
cessive estimates of $(x, z )  converge to within 1 yo. (Two iterative cycles are required 
to obtain 1 yo convergence; three cycles give 0.1 yo convergence.) 

Prom initial model solutions we found that the r.m.8. value of 8Pl/8x was at least 
two orders of magnitude less than the r.m.8. value of a?’/& in every case. We therefore 
assume that the overall effect of horizontal pressure gradients on w, and ultimately 
on u, is small and replace (Al)  with (Al)’.  This simplifies the mathernatica and results 
in considerable savings of computer resources, but can only be justified a posteriori. 
The ratio of the r.m.8. values of 8P1/8x and aT/axis largest for the high-Rayleigh-num- 
ber models at the largest value of D ( l - O O ) ,  but even when models C10 and C11 (see 
$4.2) were advanced a further 200 time steps with the pressure term included and 
compared with the solutions obtained without it, differences in mean temperature 
and kinetic energy were found to be less than 1 yo and 5 yo respectively. However for 
model C12, which is close to the limits of resolution of the numerical scheme, the 

19-2 
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inclusion of the additional term in ( A  1) and the iteration cycle led to a numerical in- 
stability which became apparent after approximately 75 additional time steps. The 
solution of this model had previously remained stable for 5500 time steps. The validity 
of the assumption that i3P1/ax may be ignored is therefore in some doubt for this 
model, and for models C13 and D1, which have higher Rayleigh numbers still. For all 
other models the assumption is justified. The linear analysis of 9 3 was also repeated 
using (Al) '  rather than ( A l ) .  The two sets of results differ by less than 0.03% at 
D = 1.00 and less still at  lower values of D. 

Equations ( A i )  or (Al) ' ,  (A2), (A3) and (A4) are solved using the finite-difference 
methods described by Moore, Peckover & Weiss ( 1974). A staggered two-dimensional 
finite-difference mesh with equal spatial increments Ax = hz = h and temporal incre- 
ment At was used. Points on the mesh have co-ordinates xi  = j h ,  zk = kh and 

n 

c= 1 
tn = 2 Ati, 

for integer values of j and k ( 2 0 )  and n = +m for integer values of m ( 2 0). Values 
of the variables T ,  w ,  $ and u at points on the mesh are written in the notation 
TEk = T ( z j ,  z k ,  t"). Thus the finite-difference analogue of (A3) is 

At 1 
Tn+l= 3 9 k  T t k + 4 ( h 2 + 2 ~ A t ) p k  - [eD'r{($?$ k - 1 -  $r+t k-1) TzI!, 

- ($?$tk- l -$?$tk+l)  T?$kk- ($?;tk+l-$??tk+l) T j , k + l  n+ t  

+ ($???&I- $??tk+l) TT'tk - ihDeDlr 

{($?$tk- l -$??tk- l )  ( T z i ! l + T O ) +  ($?$tk-$z+k') (T?$kk+TO) 

+ ($?$tk+l-$??tk+l) ( T z $ ~ l + T O ) + ( $ z 8 ' - $ ~ ~ ~ k )  (T:?tk+To)} 
~Ko(T?$$~ + Tf+k!l+ T&!t k -I- T??t k - 4Tz k )  4- 4h2€0 

Equation (73) is solved to give the temperature at the (n+ 1)th time level. A leap- 
frog difference scheme is used on the staggered mesh, centred in space and time, with 
second-order accuracy (Roberts & Weiss 1966). For integral time levels (n = 0, 1,2,. ..), 
TZk is only defined at  points withj+ k even (grid A ) ;  a t  intermediate times 

(n = 4,# 9 ... ), 
T!k is defined on the interlocking mesh points with j+k odd (grid B).  Thus if T is 
known a t  time levels n and n + 3, and $ is known a t  mesh points on both inter- 
locking grids, A and B, at time level n + + ,  then TZ+k' can be computed from (73). 
Unlike the equation used by Roberts & Weiss, (A3) cannot be written in conservative 
form and hence (73) is likely to be less accurate than the corresponding Boussinesq 
expression. 
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Equations ( A  1)' and (A2) in implicit finite-difference form become 

@ j + l ,  k+l + O j + l ,  k-1 + wj- l ,  k-1 + uj- l ,  k+l - 4wj, k =% h(Tj+ l ,  k - Tj-l ,k)  e(l-kh)D'r (74) 
and 

$j-tl, k+l + @$+I, k-1 + @j- l ,  k-1 + @j- l ,  k+l - 4@j, k 

= - 2h2wj,ke-khD'r-Dh(@j,k+l-$j,k_l)/r.  (75) 

The time level superscript is dropped in these two equations since all values are a t  
the same time level. Equation (74) was solved using an efficient algorithm for solving 
Poisson's equation, supplied by D. R. Moore and described elsewhere (Moore 1971; 
Moore et al. 1974), which uses fast Fourier analysis in the x direction and tri- 
diagonal elimination in the z direction. If T is known on grid A ,  the solution of 
(74) gives values of o on grid B (only). When (Al )  is approximated, an additional 
term is added to the right-hand side of (74) on the second and successive cycles 
of the w-$-u iteration described above. P j , k  is the pressure gradient term and is 
represented as 

p j , k  = (2lh.q - [ ( @ j + l ,  k+l - @ j + l ,  k-1) - ' ( $ j ,  k+l - @ j ,  k-1) + (@$- l ,  k+l - @j- l ,  k-111 

D 1 -- 3rfi2 ( @ j + L k  - ' @ j ,  k + @+l, k )  + a[(@$. k+8 - @ j ,  k--2) - 2 ( @ j ,  k+l - $$, k-1)l 

Equation (75) was solved by an iterative procedure. Initially ignoring the second 
term on the right-hand side of (75) gives a first estimate, @ ( I ) ,  on grid B. f l )  is then 
interpolated onto grid A with a fourth-order interpolation formula 

$ j ,k  = ~ ~ @ j + l , k ~ @ j - l , k ~ @ j , k + l ~ @ j , k - l ~ ~ ~ ~ o ~ + 1 , k ~ W I * - l , k ~ u ~ k + l ~ ~ ~ k - l ~  (77) 

derived from (A2),  where w* represents the version of the right-hand side of (75) 
used to compute @. Then the second term on the right of (75) can be computed and 
a second estimate $(2) obtained. This procedure is continued until the RMS values of 
en) and @+l) converge to within 1 "4. 

Finally, velocity components u and w are determined from @ as 

(78) I (@j ,  k+l - @ j ,  k-1 ) /2h ,  
u = -ekhDlp 

w = ekhDlr 
( @ j + l ,  k - $1-1, 

The velocities computed from (78) govern the time step, At, used to advance the 
temperature field. To ensure that the finite-difference representation of the advective 
terms in (73) is stable we impose the Courant-Friedrich-Lewy criterion 

At h/max (IUJmax, IwJmax) (79) 
(Roberts & Weiss 1966), where lulmax and JwImax are the largest absolute values of 
u and w computed a t  the current time step. We also impose the condition 

At < 0*5ha/,* (80) 
to ensure accuracy of the Dufort-Frankel representation of the diffusion terms in 
(73). In  practice (79) is generally the more stringent condition. In the time-dependent 
solutions At changes continuously to resolve details of the flow. 
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